测量土壤胞外酶活性的潜在利率,绑定到一个荧光染料的合成底物加入到土壤样品。酶的活性被测量为荧光染料从基板释放的酶催化反应,其中更高的荧光指示多底物降解。
在土壤和其它环境中的微生物产生的细胞外酶的解聚和水解的有机大分子,使他们能够被同化为能量和营养素。测量土壤中微生物酶活性是理解土壤生态系统功能的动态至关重要。荧光酶测定法的一般概念是,合成的C-,N-,或结合有荧光色素P-富含底物加入到土壤样品。当完整的标记的底物不发荧光。酶的活性被测量为作为荧光染料是从它们的底物,这使得他们能够发出荧光裂解荧光的增加。酶的测量可表示为摩尔浓度或活性单位。要执行此分析中,土壤泥浆通过用pH缓冲组合土壤制备。该pH缓冲液(通常为50mM乙酸钠或50mM Tris缓冲液),被选择用于缓冲的特定的酸离解常数(pKa值),以最好地匹配土壤山投影机的简易pH值。土浆液接种非限制性量的荧光标记( 即 C-,N-或P-富含)衬底。在试验中使用的土壤泥浆的作用是尽量减少对酶和底物扩散限制。因此,对于在衬底的限制不同,扩散速率,和土壤的pH值条件下,这种测定法的控制;从而检测潜在酶活性率在酶浓度差(每个样品)的函数。
荧光酶试验通常比光度法( 即色度)测定法更为敏感,但可以从所造成的杂质和许多荧光化合物的当暴露在光线下的不稳定性遭受干扰,所以处理荧光底物时需要谨慎。同样地,这种方法仅评估在实验室条件下的潜在酶活性的底物时,不是限制性的。解释数据时表示交叉时应该特别小心现场有不同的温度或土壤类型, 如现场土壤类型和温度比较能影响酶动力学。
由土壤细菌,真菌和古菌产生的胞外酶(EES)都参与了无数的生物地球化学过程,并且是中央的处理,稳定化,以及在陆地生态系统1土壤有机质和养分循环不稳定。通过生产电子工程师,土壤中的微生物分解和转化聚合有机物质转化为水溶性小分子,从而解放以前绑定的微营养素和,这使得植物和微生物吸收养分的土壤。电子工程师已经研究了数十年,主要通过测量实验室试验2-4的活动,因为它是非常困难的直接检测和定量的酶。
胞外酶活性(EEA)是最强烈的酶和相应的底物的浓度进行控制。的丰度不同的C-,N-,和在土壤中的P-降解酶受多种因素控制我ncluding微生物生物量,群落组成,基材供应,气候和化学计量要求5,6。然而, 在土壤环境中的原位 EEAS也受温度7,8,酶对土壤的粘土和腐殖酸属性2的结合和扩散限制9,最终调节活性酶池,在尺寸,衬底可用的方面和周转率10-12。因此,使用实验室酶测定在不同的环境场所来解释土壤微生物功能时,承认在原地土壤条件是至关重要的。
许多不同类别的欧洲经济区可以在实验室检测使用各种合成底物进行量化(请参阅更详细“的试剂表列表”)。一些协议使用在测定底物偶联到可以用分光光度计来检测的比色反应的是,瓦特往往微不足道其他人,包括我们在这里描述,利用绑定到一个荧光部分基板的协议。荧光EE测定通常比色测 定法更灵敏(由一个数量级)(使用发色基团与合成底物相连)12-14。灵敏度在EEA检测包括两个方面:一方面是与感兴趣的化合物的量检测和其他相关的最低可检测潜在的酶的活性。方法对硝基苯酚比色法(PNP)为基础的检测可以在过去找到工作15,16。简言之,土壤(通常筛分为<2毫米,空气干燥)被培养在最优或场相关的温度和pH值。在该释放的反应产物比色用分光光度计14测定的速率。部分的荧光酶测定的更高的灵敏度是由于更灵敏的检测与SUBSTR相关联的荧光基团分离的一个特定的显色部分的特定波长分离后吃降解,而不是记录吸光度。两种最常用的合成荧光指示剂是4 -甲基伞形酮(MUB)17和7 -氨基-4 -甲基香豆素(MUC)18,19。 MUC-连接基片通常用N-富合成底物,如蛋白质和/或氨基酸有关。首先水产品样品20,21发达荧光技术及其应用的土壤需要的控制信号淬火和干扰22,23。试验既可以使用传统的“台式”化学与大量进行,或可以采用基于微孔板的协议,以增加吞吐量,但可能更高的测量误差。虽然有用于荧光检测土壤中24 EEAS几种被广泛引用的协议,许多实验室采用微妙的变化对这些协议,常常无意地 或由于差S IN实验室设备和试剂。在协议的细节看似很小的差别可以强烈地影响测量EEAS 25,26和缺乏规范的酶使得它具有挑战性的校准不同实验室之间检测。因此,存在对于详细的协议的传播,以鼓励EEA测定的标准化的重要需求。
在我们的协议,土壤样品,通过结合土壤样品与pH缓冲剂和一个混合器均质化来制备。的浆液,然后用一个非限制性的量的荧光标记的接种C-,N-或P-富含衬底,这取决于所感兴趣的特定的研究问题选择。在酶测定用土壤泥浆作为一个控制,以减少衬底的扩散限制。所述荧光基团是淬灭,直到它们从它们各自的底物裂解,从而酶的活性可被检测作为荧光染料是从基板B释放Ÿ酶催化反应。通过时间的增加的荧光强度反映了酶催化反应的速率。
荧光酶测定法的一般概念是,结合有一个荧光基团(荧光染料)合成的底物,被添加到土壤样品27。在酶催化的底物降解,债券荧光染料和衬底之间断裂。荧光染料从该衬底释放出来从而被用作酶活性的间接评估,并可以用酶标仪检测染料的荧光强度来定量。总之,荧光定量是完成作为解放染料吸收光不同波长的后发光的一种波长的。的荧光强度被记录在读板器能既激发和检测的。酶的活性可以根据已知的荧光染料conce随后被量化在衬底( 即已知量的合成底物的添加的土壤样品)一起引用的荧光强度的测定中( 即 4 -甲基伞形酮(MUB)或7 -氨基中使用的基片的特定的荧光基团的标准稀释曲线的ntrations基-4 – 甲基香豆素(MUC))。 (请参阅协议部分为对酶活性的量化具体细节)。
实验室土壤酶的测定是评价微生物群落功能非常有用,但也有一些技术上的限制,用户应该认识10。荧光检测可以由杂质和/或许多荧光化合物的不稳定性,当暴露在光线造成的干扰受到影响,因此使用荧光底物25时,谨慎是必要的。在土壤泥浆土颗粒和/或有机材料也可能会干扰荧光强度,被称为淬灭效应26。此外,实验室酶测定仅评估潜在EEAS在实验室条件下, 在体外试验中测量条件下底物扩散和丰富的非限制性下EEAS。因此,通过这些实验提供的数据可能不会在原位土壤条件10对EEAS一个很好的代理下。总体而言,酶的活性是相对比较,在其中的土壤类型是相似的非常有用的。但是,使用这种方法到不同的物理或化学性质的土壤中比较活动时,应谨慎使用。这是由于这一事实,即在土壤类型和温度的差异可显着改变的原位酶动力学的状态。另一个限制是,相对较少的底物是可商购的(相比于天然环境)。此外,用于酶测定的合成底物是相对简单的(易溶)可能无法精确地表示土壤基质存在或availablE 在原地 。另一个需要考虑的因素是,使用土壤泥浆会加入一些稳定的酶( 即由有机质或粘土固定),根据可能不活动现场条件2的活性。实验室酶测定也没有提供有关的酶在土壤中(酶周转率)或有关的是生产土壤酶的特定的微生物种类信息的持久性信息。
潜在土壤EEAS的实验室为基础的测量可以提供重要的见解微生物对它们的非生物环境,其后果对生态系统功能。这个例子中的数据集的结果表明,在土壤酶的活性或动力学存在气候处理区之间的细微差别。然而,地块间的逆潮流鼓励协变量,可能会影响生产微生物EEAS如土壤水分,土壤pH值或植物生长的进一步调查。总体而言,评估在第(1)在土壤中的总EEA,(2)化学计量EEA(3)Arrhenius图/活化能,和(4)Q 10提供了一个宽的光谱的方法,可以是指示性的生态系统级进程而言EEAS从中有力地描述土壤生态系统功能的动态变化。
高通量的基于荧光的EEA测定法被广泛用来研究在土壤中潜在EEAS和一个有用的工具其他环境。重要的是,潜在的活动反映酶的池大小,但本身不定量的酶生产或周转率46。虽然技术相对简单,其中实验室的协议看似微小的差别会妨碍结果13的可比性。不幸的是,我们目前没有为EEAS合适的标准化阳性对照。使用化学计量比的是一种方法来克服这些挑战。否则,高通量技术的出现具有先进的酶的研究在环境4。由这些测定生成的数据进行仔细的解释可以澄清重要趋势微生物活性。
该协议的健壮性从选择用于特定个体的样品条件的能力的茎,但是这也可能导致限制。将需要一系列的改进,以确保样品被准确地测量各个领域的网站:
缓冲
您选择的缓冲区将取决于土壤的pH值。缓冲剂也稳定的荧光标准的荧光强度,这是高度依赖于pH 27,47。我们通常使用使土壤泥浆的pH值缓冲液是50mM乙酸钠或Tris缓冲液被选择用于缓冲的特定的酸离解常数(pKa值),以最佳匹配土壤 – 样品的pH水平。乙酸钠具有4.76的pKa,以及三具有8.06的pK a所以这两个缓冲器的量会有所不同,以达到所需的pKa值的个体的样品。磷酸盐缓冲液(pKa值= 7.2)已被建议用于中性/略碱性土壤。但是,我们提醒来测试的初步研究分析变异使用这个缓冲区之前,高磷酸盐浓度可能与酶的活性干涉。
处理荧光底物和存储
jove_content“>荧光检测可以由杂质和/或多种荧光化合物的不稳定性,当暴露在光线造成的干扰受到影响,因此使用荧光底物时,谨慎是必要的。我们强烈建议尽量减少任何光线照射到荧光标记的底物和MUB和MUC标准。使用琥珀色玻璃瓶或覆盖用于制作和存储荧光底物和标准的玻璃器皿和容器强烈建议,铝箔包装的玻璃器皿和容器行之有效同样地,有效地接种板和转移到黑暗的孵化器是最好的做法我们推荐。收纳基板和标准(-20℃)不超过两个月(同时保护他们免受光);和解冻基板(5℃)〜24〜48小时开始酶测定(S)之前。设计和复制
为井孔样品的变化,实施是负面最佳帐户Ë检测控制和(如果可能的话)法复制建议。变化通常发生是由于在每个土壤颗粒的量的差异以及与移液误差。因此,强烈搅拌和良好的移液技术将大大减少井井变化。此外,我们强烈建议实施一个试验阴性对照(缓冲液+底物溶液),随着时间的推移,监察基板的不一致性。这可以读取酶板通过比较阴性对照孔时(我们通常使用在96孔板中的最后一列)很容易地监测。负衬底控制通常是稳定的,因此信号的增加远远高于检测限,它是指示污染或基片的不稳定性,需要更换新的底物和/或标准的解决方案。
为了最大限度地提高吞吐量,我们的协议包括在一个单一的深孔微量几个潜在EEAS,虽然其他的协议执行一种类型的因为不同的EEAS每盘( 即,一个每板基板)检测发生在不同的费率。无论如何,酶的优化,必须对土壤在整个方法或单盘高的方法执行此之前进行。多个基片可以在一个板中使用,如果反应速率为孵育的时间周期内的各酶相对一致。
我们的协议建议〜2.75克土,使浆液中,而〜1克建议在其他协议24。我们建议使用更多的土壤(如果可能)是一种有效的方法,在样本中酶的活性水平变化的土壤更好地捕捉。在这个协议中,我们培养800微升土壤泥浆用200μl底物,而另一些仅孵育200μl的泥土浆液与50微升底物。这是简单地扩大,最终不改变测量出的活动的功能。也有实用的优点使用更大的卷。一,比较容易避免土壤颗粒而吸入到相应的记录在荧光强度前黑色平底96孔板中。第二,在传送黑色平底96孔板的荧光计记录酶相关的荧光强度之前的额外体积是在意外泄漏的情况下是有用的。即使在音量略有偏差将显著降低荧光井间。最后,由于该协议的高吞吐量的性质,我们通常选择依靠实验复制来表示变化酶的活性水平,而不是执行法复制。它始终是最好的做法,包括分析重复,但在实践中,我们感觉到我们的协议提供给有限的资源分析和实验重复之间的平衡折衷。同样,我们的方法是使用比较多的良好均匀的土壤(2.75 G)每次检测25,这inhere在土壤变异ntly降低。使用分析重复的决定,应在初步研究48测试的分析误差要慎重考虑。不过,我们建议实验设计少于4个治疗组重复应该认真考虑使用重复检测。
土壤,缓冲卷,底物浓度的优化
土壤缓冲液:底物浓度比进行酶测定时,它严重影响测得的荧光的一个重要变量。加入土壤中的淤浆的量,以吸附法或底物的浓度,可能需要根据土壤样品中酶的活性进行调整。所选择的这个例子金额是基于这些土壤的早期测试,以确保基板可用率非限制性的,而我们的实验条件(V 最大 )下测量的最大潜能率44,45。然而,对于具有高浓度酶的土壤样品,土壤或基质浓度的量必须增加。我们已经发现,增加底物浓度(并相应地调整标准曲线)可影响该曲线的线性度。因此,我们建议降低土壤金额及/或比例调整为所需的缓冲量。无论如何,以优化底物浓度为测定各土壤类型,因为测量EEAS可通过饱和的和亚饱和底物浓度26之间的幅度大于一个数量级差别是很重要的。因此中间试验性治疗( 等 )的差异很容易受到II型统计误差,不太可能在亚饱和条件下进行检测,并统计误差27,35。以优化的底物浓度,初步酶分析应该使用范围广泛的底物浓度的有代表性的土样进行。后记录荧光,只是绘制的数据(同样地,通过标准曲线例子, 图1),以确定对应于酶的活性(y-轴)的底物浓度(X轴),其中坡度的水平销(〜0)。同样地,对应于该点的斜率的水平销(〜0)是最佳的底物浓度为那个特定的土壤的良好指示的底物浓度。
该测定中,最终测定荧光在由一个从所述基板切割的酶介导的底物解聚而产生的荧光基团产生的一个给定的时间。因此,在步骤5(基底加法)是关键的,必须以最小化当基片被加入到土壤中,当测定温育的时间尽可能有效地执行。同样,一旦在基片进入与样品接触,酶促反应将开始发生。我们建议使用多通道吸取这个原因。我们强烈建议使用多道移液器前一天要执行你的酶测定变得高效。要做到这一点,你可以练习移液加水,直到你可以轻松地卷与您移液器转移到96孔板中。
土壤淬火
淬火是指降低引起的土壤泥浆,孵育26的微粒和/或有机材料的荧光强度。缓冲率25:淬火可以通过调节土壤的影响。由于从单个样品的背景荧光,关键是要与样品占背景(淬火)荧光运行标准。尽管一些协议使用的测试信号是线性的后一个集中,我们强烈建议实施一个标准的淬火控制每个样品最好控制淬火的效果。如果不这样做将导致一个独立ARD曲线并不适用于该示例,并且不正确的酶活性的估计。加入标准土壤泥浆不是时间敏感的,因为标准添加不影响样品的背景荧光。
添加氢氧化钠
加入NaOH中使用一些协议来优化,因为从合成底物释放的荧光染料,在pH显示出峰的荧光> 9.0 26,49荧光酶活性的测量。当考虑这个建议,有必要对土壤泥浆pH值( 即 pH值> 9),NaOH的浓度将取决于特定的土壤上有所不同,pH缓冲液中使用26。然而,其他人认为的NaOH可能不是必需的,因为信号强度一般是非常高的,即使在较低的pH值,并因为它引入的测量误差的额外来源。例如,添加氢氧化钠对浆液的pH,从而MUB或MUC fluore效果随着时间的推移刘哲民25的变化。 MUB键合底物已被证明,以证明以下的NaOH添加水平锥度之前一致增加的荧光持续20分钟;而MUC已经证明稳定降低荧光长达60分钟26。因此,标准化的NaOH添加和荧光测量之间的时间间隔是很重要的。另外,如果荧光水平是足够可检测而不此外,进行测定而不加入NaOH已被建议作为一个同样可接受的替代26。
温度
温度灵敏度应当决定孵化温度予以考虑。如果主要的兴趣是理解酶动力学,使用三个或更多的温度如图所示使用Arrhenius图(在结果部分)是一个强大的方法。如果样品的网站有特征性,如低温环境多年冻土,那么所需时Ñ培养可能需要被扩展,以允许对这些酶在较冷的温度下温育反应。而传统的酶动力学表明温度上升时,应导致增加的酶活性,我们已经发现,酶可以是位点特异性的温度灵敏度50表示。因此,以了解特定于站点的酶活性的潜力至关重要的是,培养温度和时间进行调整,以反映字段的网站值。
结论
电子工程师在土壤中的生物地球化学过程的关键驱动力,因此,我们需要能够衡量他们的活动。有许多挑战,测量EEAS在土壤中,包括干扰和抑制。尽管存在这些挑战,标准化的协议(如这里所描述的那个)可以普遍适用于测量EEAS范围广泛的酶。虽然它是相当容易的以下这些协议产生的质量数据,该中在生态背景下,这个数据terpretation需要仔细考虑了这些试验是真的测量,以及如何测定条件下EEAS可以就地条件不同于下。
The authors have nothing to disclose.
本出版物是由美国国家科学基金会(DEB#1021559)支持环境研究协调网络研究资助的酶。这项研究是由美国国家科学基金会(DEB#1021559),和科学的能源办公室(生物和环境研究)美国能源部的支持。任何意见,研究成果,并表示在这个物质的结论或建议是那些作者,并不一定反映了美国NSF的意见。
Name of Material/ Equipment | Company | Catalogue number | Comments |
Reagents: | |||
4-Methylumbelliferyl α-D-glucopyranoside (AG) | Sigma Aldrich | M9766 | Sugar degradation |
4-Methylumbelliferyl β-D-glucopyranoside (BG) | Sigma Aldrich | M3633 | Sugar degradation |
4-Methylumbelliferyl β-D-cellobioside (CB) | Sigma Aldrich | M6018 | Cellulose degradation |
L-Leucine-7-amido-4-methylcoumarin hydrochloride (LAP) | Sigma Aldrich | L2145 | Protein degradation |
4-Methylumbelliferyl N-acetyl-β-D-glucosaminide (NAG) | Sigma Aldrich | M2133 | Chitin degradation |
4-Methylumbelliferyl phosphate (PHOS) | Sigma Aldrich | M8883 | Phosphorus mineralization |
4-Methylumbelliferyl-β-D-xylopyranoside (XYL) | Sigma Aldrich | M7008 | Hemicellulose degradation |
4-Methylumbelliferone (MUB) | Sigma Aldrich | M1381 | |
7-Amino-4-methylcoumarin (MUC) | Sigma Aldrich | A9891 | |
50 mM Sodium acetate anhydrous buffer | Fisher Scientific | S210-500 | acidic and neutral soils |
50 mM Tris base buffer | Fisher Scientific | BP154-1 | basic soils |
Equipment | |||
Bel-Art Scienceware disposable pipetting reservoirs | Fisher Scientific | 14-512-65 | pipetting reservoir |
Electronic; Eppendorf Xplorer; 8-channel | Fisher Scientific | 13-684-265 | 8-channel pipette, range: 50-1,200 μl |
TipOne 101-1,250 μl extended length natural tips | USA Scientific | 1112 – 1720 | 10 racks of 96 tips (960 tips) |
Hotplate; heating surface: 10 in x 10 in. | Fisher Scientific | 11-100-100SH | Lab disc magnetic stir plate |
Waring blender | Fisher Scientific | 14-509-7P | Two-speed; 1 L (34 oz) stainless steel container |
BRAND Dispensette III bottle-top dispensers | Fisher Scientific | 13-688-231 | Dispenser; range: 5-50 ml |
Wheaton Unispense μP peristaltic pumps | Fisher Scientific | 13-683-7 | Optional dispenser |
Fisherbrand magnetic stir bar | Fisher Scientific | 1451363SIX | Used to stirr soil slurry afer blending |
Pyrex glass bowls | World Kitchen | 5304218 | Pyrex 10 oz rimmed custard cup |
Costar 96-well black solid plates | Fisher Scientific | 07-200-590 | Used for plate reader step |
Costar 96-well assay blocks | Fisher Scientific | 07-200-700 | V-bottom; 2 ml; sterile |
Thermo Scientific Nunc 96-well cap mats | Fisher Scientific | 14-387-93 | Sterile 96-well cap mat for square wells |
Centrifuge equipped with holders for deep-well plates | Thermo Scientific | 3121 | Centra-GP8 (this model is no longer available) |
Tecan Infinite 200 series multifunctional microplate reader | Tecan | 30016058 | Plate reader (this model is no longer available) |