Summary

Dependencia de la inducida por láser Desglose Espectroscopia Resultados sobre Energías pulso y parámetros de temporización utilizando simulantes de suelo

Published: September 23, 2013
doi:

Summary

Capacidades de detección de LIBS en simulantes de suelo se ensayaron usando una gama de energías de impulsos y parámetros de sincronización. Las curvas de calibración se utilizaron para determinar los límites de detección y la sensibilidad para diferentes parámetros. En general, los resultados mostraron que no hubo una reducción significativa en las capacidades de detección utilizando energías de impulso más bajos y la detección no cerrada.

Abstract

La dependencia de algunas capacidades de detección LIBS en bajas energías de pulso (<100 mJ) y los parámetros de tiempo fueron examinados utilizando muestras de silicatos sintéticos. Estas muestras se utilizaron como simulantes para el suelo y contenían elementos menores y traza se encuentran comúnmente en el suelo en una amplia gama de concentraciones. Para este estudio, más de 100 curvas de calibración se prepararon utilizando diferentes energías de impulso y parámetros de sincronización; límites de detección y la sensibilidad se determinan a partir de las curvas de calibración. Temperaturas de plasma también se midieron utilizando parcelas de Boltzmann para las diferentes energías y los parámetros de tiempo probados. La densidad de electrones del plasma se calculó utilizando la mitad del máximo de ancho total (FWHM) de la línea de hidrógeno a 656,5 nm en las energías probados. En general, los resultados indican que el uso de energías de impulso más bajos y la detección no cerrada no comprometen seriamente los resultados analíticos. Estos resultados son muy relevantes para el diseño de campo-e instrumentos LIBS persona-portátiles.

Introduction

Inducida por láser desglose espectroscopia (LIBS) es un método sencillo de análisis elemental que utiliza una chispa generada por láser como la fuente de excitación. El pulso láser se enfoca sobre una superficie que se calienta, ablación, atomiza y ioniza el material de la superficie resultante en la formación del plasma. La luz de plasma se resuelve y detecta espectralmente y los elementos se identifican por sus firmas espectrales. Si bien calibrado, LIBS puede proporcionar resultados cuantitativos. LIBS pueden analizar sólidos, gases y líquidos con poca o ninguna preparación de la muestra. 1 Estas características lo hacen ideal para el análisis que no pueden llevarse a cabo en el laboratorio.

Actualmente, LIBS se está estudiando para muchas aplicaciones diferentes especialmente aquellas que requieren mediciones sobre el terreno para la cuantificación. 1-8 Esto requiere el desarrollo de instrumentación LIBS utilizando componentes robustos y compactos adecuados para un sistema basado en el campo. En la mayoría de los casos, lacomponentes en sí no tienen todas las capacidades de instrumentación de laboratorio, comprometiendo así el rendimiento del análisis. LIBS resultados dependen de los parámetros del pulso láser y demás condiciones de medición que incluyen la geometría de muestreo, la atmósfera circundante, y el uso de la detección cerrada o no cerrada. 9-12 Para la instrumentación LIBS sobre el terreno, dos factores importantes a considerar son la energía del pulso y el uso de vallado frente a la detección no cerrada. Estos dos factores determinan en gran medida el costo, tamaño y complejidad del instrumento LIBS. Pequeña, láseres de construcción resistente que pueden generar pulsos 10-50 mJ en las tasas de repetición de 0,3 a 10 Hz están disponibles comercialmente y sería muy ventajoso utilizar. Por lo tanto, es importante saber lo que, en su caso, la pérdida en la capacidad de detección será el resultado de la utilización de estos láseres. La energía del pulso es un parámetro clave para LIBS, ya que determina la cantidad de material por ablación y vaporizado y el carbón de leña de excitaciónterísticas del plasma. Además, el uso de detección controlada puede aumentar el coste del sistema LIBS, y como resultado, es imperativo para determinar las diferencias entre los espectros y las capacidades de detección, usando la detección cerrada y no cerrada.

Recientemente, se realizó un estudio comparando la detección cerrada a la detección no cerrada para elementos menores que se encuentran en acero. Los resultados mostraron que los límites de detección fueron comparables si no mejor para la detección no cerrada. 12 Una característica importante de LIBS es que la técnica experimenta los efectos de matriz físicas y químicas. Un ejemplo de lo anterior es que las parejas del pulso láser de manera más eficiente con superficie conductora / metal que las superficies no conductoras. 13 Para este estudio, hemos querido determinar los efectos de los parámetros de energía de pulso y señales horarias para materiales no conductores, como los simuladores de suelo.

Aunque, instrumentos LIBS portátiles de campo se han desarrollado y utilizadopara algunas aplicaciones, un amplio estudio sobre las capacidades de detección no se ha realizado la comparación de los sistemas cerrados de energía más altos y para los sistemas de energía y no cerradas inferiores utilizando simulantes de suelo. Este estudio se centra en los parámetros de energía del pulso láser y señales horarias para la determinación de elementos traza en matrices complejas. La energía del pulso láser varió de 10 a 100 mJ para obtener una comparación entre las energías inferiores y superiores. Una comparación de la utilización de cerrada contra la detección no cerrada también se realizó en el mismo rango de energía.

Protocol

1. Sistema láser Utilice pulsos láser producidos por un Q-switched Nd: YAG láser que opera a 1064 nm ya 10 Hz. Centrarse los pulsos de láser sobre la muestra con una lente de distancia focal de 75 mm. Recoger la luz de plasma con una fibra óptica señalado en y se coloca cerca de la plasma formado en la muestra. Utilice un espectrógrafo Echelle / ICCD a espectralmente resolución y registrar el espectro LIBS. Opere el ICCD en ambos modos no cerradas y bloqueadas u…

Representative Results

Efecto de la energía del pulso láser y modos de detección de las capacidades de detección. LIBS espectros de las muestras de silicatos sintéticos se registraron usando detección cerrada y no cerrada sobre la gama de energías de impulso láser probados. Más de 100 curvas de calibración se construyeron a partir de estos datos para evaluar el efecto de la energía de pulso de láser. Las curvas de calibración fueron preparados por (1) utilizando el área bajo el pico del analito y (2) por ratioin…

Discussion

Al comparar los modos de detección no cerradas y bloqueadas, los datos muestran que el límite de detección del modo de detección controlada permitió la detección de todos los elementos, incluidos los que no fueron vistos usando energías láser más altas en el modo de detección no cerrada. Uso de la detección cerrada, el alto fondo inicial de la formación del plasma no se observa y el fondo se reduce mostrando la emisión elemental mejor resuelto. Por otra parte, los límites de detección fueron ligeramente i…

Divulgations

The authors have nothing to disclose.

Acknowledgements

Este trabajo fue financiado a través del Departamento de Energía, Oficina de Ciencia EE.UU..

Materials

Equipment
Nd:YAG laser Continuum Surelite II
Echelle spectrograh/ICCD Catalina/Andor SE200/iStar
Digital delay generator BNC Model 575-4C
Hydraulic Press Carver Model-C
31-mm pellet die Carver 3902
Power meter indictor model Scientech, Inc. Model number: AI310D
Power meter detector model Scientech, Inc. Model number: AC2501S
Oscilloscope Tektronix MSO 4054
Optical fiber Ocean Optics QP1000-2-UV-VIS
Lens kit (this kit contains the 75 mm f.l. lens) CVI Optics LK-24-C-1064
Reagent/Material list
Synthetic silicate sample Brammer Standard Company GBW 07704
Synthetic silicate sample Brammer Standard Company GBW 07705
Synthetic silicate sample Brammer Standard Company GBW 07706
Synthetic silicate sample Brammer Standard Company GBW 07708
Synthetic silicate sample Brammer Standard Company GBW 07709
Aluminum caps (for pressing synthetic silicate samples) SCP Science 040-080-001

References

  1. Song, K., Lee, Y., Sneddon, J. Recent developments in instrumentation for laser induced breakdown spectroscopy. Appl. Spec. Rev. 37 (1), 89-117 (2002).
  2. Yamamoto, K. Y., Cremers, D. A., Foster, L. E., Ferris, M. J. Detection of Metals in the Environment Using a Portable Laser-Induced Breakdown Spectroscopy Instrument. Appl. Spec. 50 (2), 222-233 (1996).
  3. Cuñat, J., Fortes, F. J., Cabalín, L. M., Carrasco, F., Simón, M. D., Laserna, J. J. Man-Portable Laser-Induced Breakdown Spectroscopy System for in Situ Characterization of Karstic Formations. Appl. Spec. 62 (11), 1250-1255 (2008).
  4. Munson, C. A., Gottfried, J. L., Gibb-Snyder, E., DeLucia, F. C., Gullett, B., Miziolek, A. W. Detection of indoor biological hazards using the man-portable laser induced breakdown spectrometer. Appl. Opt. 47 (31), G48-G57 (2008).
  5. Multari, R. A., Foster, L. E., Cremers, D. A., Ferris, M. J. Effect of Sampling Geometry on Elemental Emissions in Laser-Induced Breakdown Spectroscopy. Appl. Spec. 50 (12), 1483-1499 (1996).
  6. Harmon, R. S., DeLucia, F. C., McManus, C. E., McMillan, N. J., Jenkins, T. F., Walsh, M. E., Miziolek, A. Laser-induced breakdown spectroscopy – An emerging chemical sensor technology for real-time field-portable, geochemical, mineralogical, and environmental applications. Appl. Geochem. 21 (5), 730-747 (2006).
  7. Schill, A. W., Heaps, D. A., Stratis-Cullum, D. N., Arnold, B. R., Pellegrino, P. M. Characterization of near-infrared low energy ultra-short laser pulses for portable applications of laser induced breakdown spectroscopy. Opt. Express. 15 (21), 14044-14056 (2007).
  8. Fortes, F. J., Laserna, J. J. The development of fieldable laser-induced breakdown spectrometer: No limits on the horizon. Spectrochim. Acta Part B. 65 (12), 975-990 (2010).
  9. Leis, F., Sdorra, W., Ko, J. B., Niemax, K. Basic Investigations for Laser Microanalysis: I. Optical Emission Spectrometry of Laser-Produced Sample Plumes. Mikrochim. Acta II. 98, 185-199 (1989).
  10. Lida, Y. Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim. Acta Part B. 45 (12), 1353-1367 (1990).
  11. Radziemski, L. J., Loree, T. R. Laser-induced breakdown spectroscopy: Time-integrated applications. J. Plasma Chem. Plasma Proc. 1 (3), 281-293 (1981).
  12. Mueller, M., Gornushkin, I. B., Florek, S., Mory, D., Panne, U. Approach to Detection in Laser-Induced Breakdown Spectroscopy. Anal. Chem. 79 (12), 4419-4426 (2007).
  13. Fan, C., Longtin, J. P. Modeling Optical Breakdown in Dielectrics During Ultrafast Laser Processing. Appl. Opt. 40 (18), 3124-3131 (2001).
  14. ANSI Z-136.5. . American National Standard for Safe Use of Lasers in Educational Institutions. , (2009).
  15. . . Compendium of Chemical Terminology. , (1997).
  16. Cremers, D. A., Radziemski, L. J. . Handbook of Laser-Induced Breakdown Spectroscopy. , (2006).
  17. Griem, H. R. . Spectral Line Broadening by Plasmas. , (1974).
  18. Ashkenazy, J., Kipper, R., Caner, M. Spectroscopic Measurements of Electron Density of Capillary Plasma Based on Stark Broadening of Hydrogen Lines. Phys. Rev. A. 43 (10), 5568-5574 (1991).

Play Video

Citer Cet Article
Kurek, L., Najarian, M. L., Cremers, D. A., Chinni, R. C. Dependence of Laser-induced Breakdown Spectroscopy Results on Pulse Energies and Timing Parameters Using Soil Simulants. J. Vis. Exp. (79), e50876, doi:10.3791/50876 (2013).

View Video