bioprinter、犠牲型に基づいてパターン化されたハイドロゲルを作成するために使用された。ポロキサマー型は第二のヒドロゲルで埋め戻した後、溶出し、第三のハイドロゲルを充填した空隙を残していた。この方法では、生体高分子から複雑なアーキテクチャを生成する高速溶出及びポロキサマーの良い印刷適性を使用しています。
Bioprintingは、ラピッドプロトタイピング業界にその起源を持っている新興の技術です。異なる印刷プロセスは、コンタクトbioprinting 1-4(押し出し、ディップペンとソフトリソグラフィ)、非接触bioprinting 5-7(レーザフォワード転写、インクジェット法)、例えば2光子光重合8、レーザベースの技術に分けることができる。そのような組織工学9-13、バイオセンサー微細加工14-16として、例えば、異なる細胞型17の共培養の影響などの基本的な生物学的質問に答えるためのツールとして多くの用途に使用することができる。一般的なフォトリソグラフィーまたはソフトリソグラフィー法とは異なり、押出bioprintingは、別個のマスクやスタンプを必要としないという利点を有する。 CADソフトウェアを使用して、構造の設計を迅速に、オペレータの要求に応じて変更して調整することができる。これは、リソグラフィベースより柔軟bioprintingなりアプローチ。
ここでは一例としてヒドロゲル内にピラーのアレイを用いて多重材料の3D構造を作成するために、犠牲モールドの印刷を示す。これらの柱は神経ガイド導管内血管網やチューブのための中空構造を表すことができます。犠牲型のために選択された材料は、ポロキサマー407、4で24.5%w / vのソリューション18℃で、そのゲル化温度〜20℃上記の固体、液体である優れた印刷特性を持つ熱応答性ポリマーであった。このプロパティは、ポロキサマーベースの犠牲型はオンデマンドで溶出することができ、特に狭いジオメトリのための固体材料の溶解が遅い上の利点があります。ポロキサマーは、犠牲モールドを作成するために、顕微鏡ガラススライド上に印刷した。アガロースを金型にピペットでゲル化するまで冷却した。冷たい水の中ポロキサマーの溶出した後、アガロース型内ボイドがアルギン酸メタクリルSPに満ちていたFITCラベルされたフィブリノゲンとiked。いっぱいボイドは、その後UVを架橋された及び構築物は落射蛍光顕微鏡で画像化した。
組織工学アプローチは、ヒト組織および器官の再生19,20に対して過去数年にわたって多くの進歩を遂げている。しかし、今まで、組織工学の焦点は、しばしば簡単な構造、又は膀胱21,22または皮膚23-25 のような小さな寸法を有する組織に限定されている。人間の体は、しかしながら、細胞と細胞外マトリックスは、空間的に定義された方法で配置されている多くの複雑な三次元組織を含んでいる。これらの組織を製造するために、技術が所定位置に3次元構造物内の細胞と細胞外マトリックスの足場を配置することが要求される。 Bioprintingは、製造の複雑な三次元組織のビジョンは10,11,26-28を実現できるような技術になる可能性を持っています。
Bioprintingをパターニングするための物質移動プロセスの使用 "として定義され、相対生物学的に組み立てされているエバント材料-分子、細胞、組織、および生物分解性の生体材料-所定の組織との一つ以上の生物学的機能を達成するために"4これは、2つのサブミクロンの分解能に至るまで、異なる解像度および長さスケールで動作するいくつかの異なる技法を包含する押出印刷1,12,30用420ミクロン〜150ミクロンの解像度に光子重合29。ない単一の材料または材料の組み合わせは、それぞれの方法31の要件を満たします。押し出し印刷の場合、重要なパラメータは、粘度とゲル化時間です高粘度と迅速なゲル化が望まれている32。
3Dプリントは、複雑な形状30,33,34を作成するための犠牲型を簡単に作成可能にする技術です。このプロセスは、押出bioprinterなどのラピッドプロトタイピング技術を用いて金型の構造に基づいている。作成された犠牲鋳型が使用されそれらの低粘度およびゲル化遅い時間に起因する印刷することが困難である材料から複雑な構造を形成する。ここに示された方法は、低温で迅速に溶解かつ正確に押し出すことができる材料からなる犠牲鋳型の生成を伴う。ブロック共重合体、ポリ(エチレングリコール)99 -ポリ(プロピレングリコール)67 -ポリ(エチレングリコール)99(また、プルロニックF127又はポロクサマー407とも呼ばれる)これらの要件を満たす。それは、すでに我々の知る限り、液体環境でその不安定性のためにその変更されていないバージョンで印刷するために使用されていない、押出印刷1で修正されたバージョンで使用されますが、されています。ポロクサマー407はまた、逆の熱応答挙動18 すなわち冷却時にゾルにゲルから、それが変化を示している。最も重要なのは、それは非常に高い忠実度で複雑な任意に湾曲構造に印刷することができます。これはから構造化ヒドロゲルの作成を可能に低粘度材料、この場合遅いゲル化アガロースで、印刷された犠牲鋳型にソリューションをピペッティングにより。鋳物構造化されたハイドロゲルからの高忠実度とその迅速な溶出犠牲型の印刷の組み合わせは、そのマスクまたはそれはしばしばリソグラフィー法で必要とされるようにタイムスタンプを使用することなく、異なる形状を持つ金型を作成するために、迅速かつ柔軟な方法になります。鋳造構造化されたヒドロゲルは、さらに、その低粘度のため、押出印刷に適していない別の材料を充填することができる。これは、我々の場合には低粘度のアルギン酸メタクリルソリューションです。ここでは、ピラーの配列の一例を用いてヒドロゲルをパターニングするための逆温度応答性犠牲鋳型の方法を提案する。
ここでは、初めて、すぐに〜のポロキサマーのゲル – ゾル転移点20℃のために冷たい水に溶出させることができる犠牲型のため熱応答性ポリマーの使用を提示プロセス全体の速度は十分な解像度で印刷することができません生体高分子構造を迅速に作成するためのポロキサマー興味深い。以前に他の材料35について報告されているとしてここに記載された技術は、他のヒドロゲル内ま?…
The authors have nothing to disclose.
我々はbioprinterのヘルプはデボラステューダーに感謝します。
作業は、付与契約にN下、欧州連合第七フレームワークプログラム(FP7/2007-2013)°NMP4-SL-2009から229292によって資金を供給された。
REAGENTS | |||
Poloxamer (Pluronic F127) | Sigma | P2443 | |
PBS | Invitrogen | 10010-015 | |
CAD software | regenHU | BioCAD | |
Alginate methacrylate | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Fibrinogen From Human Plasma, Alexa Fluor 488 Conjugate | Invitrogen | F13191 | |
Lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP) | Innovent e.V Technologieentwicklung Jena | Synthesized by Innovent for the FP7 Project Nr NMP4-SL-2009-229292 | |
Agarose | Lonza | 50004 | |
EQUIPMENT | |||
Bioprinter | regenHU | Biofactory | |
Valve | regenHU | 300 μm Nozzel Diameter | |
Needle | regenHU | 150 μm Inner Diameter | |
Zeiss Axioobserver with ApoTome | Zeiss | ||
UV Light Source | UVP | Blak-Ray B-100AP High Intensity UV Lamp | 100 W |