The laser heated diamond anvil cell combined with synchrotron micro-diffraction techniques allows researchers to explore the nature and properties of new phases of matter at extreme pressure and temperature (PT) conditions. Heterogeneous samples can be characterized in situ under high pressure by 2D mapping and combined powder, single-crystal and multigrain diffraction approaches.
High pressure compounds and polymorphs are investigated for a broad range of purposes such as determine structures and processes of deep planetary interiors, design materials with novel properties, understand the mechanical behavior of materials exposed to very high stresses as in explosions or impacts. Synthesis and structural analysis of materials at extreme conditions of pressure and temperature entails remarkable technical challenges. In the laser heated diamond anvil cell (LH-DAC), very high pressure is generated between the tips of two opposing diamond anvils forced against each other; focused infrared laser beams, shined through the diamonds, allow to reach very high temperatures on samples absorbing the laser radiation. When the LH-DAC is installed in a synchrotron beamline that provides extremely brilliant x-ray radiation, the structure of materials under extreme conditions can be probed in situ. LH-DAC samples, although very small, can show highly variable grain size, phase and chemical composition. In order to obtain the high resolution structural analysis and the most comprehensive characterization of a sample, we collect diffraction data in 2D grids and combine powder, single crystal and multigrain diffraction techniques. Representative results obtained in the synthesis of a new iron oxide, Fe4O5 1 will be shown.
Pressure can fundamentally change the properties and bonding of matter. The Earth's topography, composition, dynamics, magnetism and even the atmosphere composition are profoundly tied to processes occurring at the interior of the planet which is under extremely high pressure and temperature. Deep Earth processes include earthquakes, volcanism, thermal and chemical convection, and differentiation. High pressure and temperature are used to synthesize super-hard materials like diamond and cubic boron nitride. High PT synthesis combined with in situ x-ray diffraction allows researchers to identify the crystal structures of the new materials or high-pressure polymorphs of extreme technological importance. The knowledge of high-pressure structures and properties allows interpretation of the structure and processes of planetary interiors, modeling of the performance of materials under extreme conditions, synthesis and design of new materials, and achievement of a broader fundamental understanding of materials' behavior. The exploration of high pressure phases is technically demanding due to the twofold challenges of controllably generating extreme environmental conditions and probing small samples within bulky environmental cells.
A range of materials and techniques may be used to perform synthesis at extreme conditions2, 3. The most suitable equipment for each particular experiment depends on the material investigated, the target PT, and the probing techniques. Among high pressure devices, the LH-DAC has smallest sample size, but is however capable of reaching the highest static PT (above 5 Mbar and 6,000 K) and allows the highest resolution x-ray structural analysis. The protocol described below led to the discovery of Fe4O5 1 and is applicable to a wide range of materials and synthesis conditions. The LH-DAC is best suited for materials efficiently absorbing the laser wavelength of ~1 µm available at high pressure synchrotron beamlines (e.g. 16-IDB and 13-IDD stations at the Advanced Photon Source, Argonne National Lab), for synthesis pressures up to 5 Mbar and for temperatures greater than about 1,500 K. Fairly complex structures and multiphase samples can be characterized with the x-ray microdiffraction strategies presented here. Other techniques, such as whole DAC heating4 and local resistive heating, are suitable for lower synthesis temperatures. CO2 5 laser heating, with wavelength of about 10 µm, is suitable for the heating of materials transparent to the infrared YLF laser but absorbing the CO2 radiation. Other devices, such as multi-anvil, piston-cylinder and Paris-Edinburgh presses, provide larger volume samples necessary for neutron diffraction experiments, for instance.
In the LH-DAC, invented in 19676, 7, 8, high pressure is generated on a small sample placed between the tips of two opposed diamond anvils. In the laser heating systems installed at synchrotron experimental stations9, 10, 11, laser beams are delivered on a sample from both sides through the diamond anvils while a brilliant x-ray beam is focused on the heated spot. Samples absorbing the laser light are heated while x-ray diffraction is used to monitor the progress of the synthesis. The thermal radiation emitted by the laser heated sample is temperature dependent. Thermal emission spectra collected from both sides of the sample are used to calculate the sample temperature by fitting the spectra to the Plank radiation function assuming black body behavior8.
The crystal structure analysis of products of synthesis in a LH-DAC is carried out using the brilliant synchrotron x-ray beam, high precision motorized stages and the fast x-ray detectors available at dedicated synchrotron experimental stations. We collect x-ray diffraction data in a 2D grid and customize the data collection strategy according to the grain size. This approach allows to: i) map the sample composition; ii) obtain robust data analysis of a complex multiphase sample by combining single crystal, powder and multi-grain diffraction techniques.
1. Diamond Anvil Cell and Gasket Preparation
2. Sample and Gas Loading
3. Laser Heating and High Temperature X-ray Diffraction
Heating of a sample inside a DAC is achieved by applying infrared lasers to the sample through diamond anvils. Samples are heated to high temperatures by absorbing the laser radiation. Samples that don't absorb the 1,063 nm radiation can be mixed with absorbing and chemically inert material (example: Pt black powder) for indirect laser heating. Since diamond is a superior thermal conductor, a preferred practice is to use thermal insulation layers (example: NaCl, MgO or Al2O3) to separate the sample from the anvil surface. Absorbing and insulating materials will, however, cause additional parasitic scattering and might react with the sample.
The online laser heating systems installed in the experimental stations 16IDB of HPCAT and of 13IDD of GSECARS9, 10, 11 of the APS are designed to perform heating and x-ray diffraction on samples loaded in the DAC. Typical energies of the x-ray beam are about 30 keV and the size at the focal spot is about 5×5 µm FWHM. Infrared lasers (YLF, wavelength = 1,063 nm) are used for heating samples in the DAC. A fast x-ray area detector such as MARCCD and XRD 1621 xN ESPE is utilized.
4. X-ray Diffraction Data Collection after Synthesis
If the synthesized phase is stable after temperature quenching, diffraction data may be collected after heating. The x-ray diffraction data are collected in transmission geometry (through the anvils). Still diffraction patterns and rotation diffraction patterns (ω-scan) are collected. The latter are collected as single rotation images (wide scan), sets of fine step scan images (one degree or less), or large step scans images (5-10°). The data collection strategy is adjusted according to the available beamtime, exposure time and detector readout speed. When using very fast detectors, fine step-scan data can be collected at each point of the 2D grid in less than an hour. This allows a complete and objective sampling of the reciprocal space across the whole sample.
We show representative microdiffraction data obtained from the high pressure and temperature synthesis of Fe4O5 from a mixture of hematite and iron according to the reaction:
Figure 5 illustrates powder diffraction patterns from B locations. Although they were collected a few microns apart, the patterns are remarkably different. In a particular spot (Figure 5a) the synthesis of Fe4O5 did not occur, instead we obtained wüstite (FeO). The locally high Fe/O ratio is presumably caused by a slightly higher local iron/hematite ratio or by a thermally induced chemical gradient. In addition to Fe4O5 and neon, the pattern in Figure 5b shows smooth Debye rings of fine grained non-recrystallized hematite, here the reaction is incomplete most likely due to non-homogeneous heating. The pattern in Figure 5c is representative of a spot where the reaction was complete and produced nearly pure Fe4O5. Data were processed using FIT2D21 and Jade22.
Figure 6 shows the single crystal diffraction pattern that led to the discovery of Fe4O5. The pattern is indexed using GSE_ADA23 (Figure 6a) and RSV (Figure 6b). Like powder diffraction data, single crystal diffraction data suffer from low resolution and intensity reliability limitations when measured in a DAC. Nonetheless, the three dimensional nature of the data allows for more robust interpretation.
Figure 1. Microphotographs taken at different steps of diamond anvils alignment. The side view of the diamond tips shows laterally roughly aligned tips (a). The axial views show interference fringes in tilted culets (b, c), laterally misaligned anvils (d), and aligned diamonds (e). Click here to view larger image.
Figure 2. Microphotographs of indented gasket (a), laser beam drilling a hole in the gasket (b), sample chamber with sample and pressure markers (c). Click here to view larger image.
Figure 3. Cartoon representation of a LH-DAC system combined with micro-focused x-ray diffraction. Laser beams (red) are delivered to the sample through two opposed anvils. The heated sample emits thermal radiation (white) from both sides that is collected by the spectrograph for temperature determination. The synchrotron beam (blue), aligned with the laser beam, allows collecting x-ray diffraction data from the center of the heated spot. Click here to view larger image.
Figure 4. The glowing sample in a DAC emitting thermal radiation in the visible range while heated with IR laser (a) and the grid of x-ray data collected across the sample area (b). Click here to view larger image.
Figure 5. Selected powder diffraction patterns collected from different locations of a mixture of iron and hematite loaded at 14 GPa and after heating at about 1,700 K. As indicated by color-coded diffraction lines, major phases in the three patterns are: a) neon and wüstite; b) Fe4O5, neon and hematite; c) Fe4O5 and neon. Click here to view larger image.
Figure 6. Indexed single crystal diffraction pattern of Fe4O5 1 (a). Diffraction peaks in the reciprocal space and unit cell (b). Click here to view larger image.
Every step of the described protocol must be performed with great care to avoid risks of experimental failure via catastrophic shatter of the anvils, gasket instability and loss of pressure, inability to achieve target temperature, sample contaminations, severe non-hydrostaticity, etc.
The greatest challenge of high P-T synthesis is the interpretation of x-ray diffraction data, a problem too extensive to be summarized here. While structural solution is inherently a non-trivial problem24, 25, 26, high pressure data suffer from very high background, presence of parasitic scattering, absorption effects, peak broadening and overlapping, poor grain statistics, multiphase samples, etc. It is therefore important to collect diffraction patterns with the highest possible resolution and redundancy.
Until recently, due to technical limitations and time constraints, most high pressure synthesis products were characterized using a single still diffraction pattern. Such an approach is suitable for the characterization of simple structures and homogeneous samples. By fine mapping the samples with a highly focused beam and using a multi-technique approach, we properly account for, and even take advantage of, the spread in grain sizes of a sample synthesized in the LH-DAC. The characterization of the structural properties of each phase composing heterogeneous samples is performed in selected patterns, preferably single-phase and better approaching an ideal powder and/or single crystal diffraction pattern. Once the structural parameters of each phase are well defined, they can be used to interpret the most complex multiphase patterns. Mapping the sample composition greatly enhances our understanding of the processes occurring in the LH-DAC. While requiring significant efforts in data collection and processing, the described approach leads to a robust and complete structural analysis of relatively complex samples and structures.
The authors have nothing to disclose.
The University of Nevada, Las Vegas (UNLV) High Pressure Science and Engineering Center is supported by Department of Energy-National Nuclear Security Administration (NNSA) Cooperative Agreement DE-NA0001982. This work was performed at the High Pressure Collaborative Access Team (HPCAT) (Sector 16), and at the GeoSoilEnviroCARS (GSECARS) (Sector 13), Advanced Photon Source (APS), Argonne National Laboratory (ANL). HPCAT operations are supported by DOE-NNSA under Award No. DE-NA0001974 and DOE-BES under Award No. DE-FG02-99ER45775, with partial instrumentation funding by NSF. GeoSoilEnviroCARS is supported by the National Science Foundation—Earth Sciences (EAR-0622171) and Department of Energy (DOE)–Geosciences (DE-FG02-94ER14466). APS is supported by DOE-BES, under Contract DE-AC02-06CH11357. We thank GSECARS and COMPRES for the use of the Gas Loading System.
diamond anvils | Almax Easylab | N/A | |
WC seats | Almax Easylab | N/A | The conical housing needs to match the conical shape of the anvil bottom |
SX-165 CCD | Marresearch | ||
XRD 1621 xN ES | Perkin Elmer | ||
W needle | Ted pella, Inc | MT26020 |