يجب الضوء من الأجسام الفلكية السفر عبر الغلاف الجوي للأرض المضطرب قبل ولا يمكن تصوير من قبل التلسكوبات الأرضية. لتمكين التصوير المباشر في قرار الحد الأقصى الزاوي النظرية، لا بد من استخدام تقنيات متقدمة مثل تلك المستخدمة من قبل النظام والبصريات التكيفية روبو-AO.
يقتصر القرار الزاوي من التلسكوبات الأرضية البصرية من آثار المهينة من الغلاف الجوي المضطرب. في حالة عدم وجود الغلاف الجوي، ويقتصر القرار الزاوي للتلسكوب نموذجية فقط الحيود، أي الطول الموجي للاهتمام، λ، مقسوما على حجم الفتحة مرآة الرئيسي لل، D. على سبيل المثال، تلسكوب هابل الفضائي (HST)، مع مرآة 2.4 متر الأولية، لديه قرار الزاوي في الأطوال الموجية المرئية الثواني ~ قوس 0.04. ويتكون الغلاف الجوي من الهواء عند درجات حرارة مختلفة قليلا، ومؤشرات مختلفة ولذلك الانكسار، خلط باستمرار. ويعكف موجات الضوء لأنها تمر عبر الغلاف الجوي غير متجانسة. عندما تلسكوب على الأرض وتركز هذه الموجات الضوئية والصور الفورية تظهر مجزأة، وتغيير بوصفها وظيفة من الزمن. ونتيجة لذلك، حصلت طويلة التعرض الصور باستخدام التلسكوبات الأرضية – حتى مع التلسكوبات بقطر أربعة أضعافالعطر من HST – تظهر ضبابية، ويكون لها القرار الزاوي ثانية قوسية تقريبا 0،5 حتي 1،5 في أحسن الأحوال.
والبصريات التكيفية الفلكية نظم تعويض عن تأثير الاضطرابات الجوية. أولا، يتم تحديد شكل الموجة غير مستو واردة باستخدام قياسات النجوم القريبة من مشرق جهاز استشعار واجهة الموجة. المقبل، وأمر عنصرا في النظام البصري، مثل مرآة تشوه، لتصحيح شكل موجة الضوء واردة. يتم إجراء التصحيحات إضافية وذلك بمعدل يكفي لمواكبة الأجواء المتغيرة بشكل حيوي من خلال التلسكوب الذي يبدو، في نهاية المطاف انتاج حيود محدودة الصور.
ويستند على الاخلاص من واجهة الموجة قياس الاستشعار على مدى والمكان والزمان عينات ضوء واردة 1. أخذ العينات أدق الأشياء يتطلب أكثر إشراقا المرجعية. في حين يمكن ألمع نجوم بمثابة مرجعية للكائنات الأهداف التصوير من عدة عشراتثانية قوسية بعيدا في أفضل الظروف والأهداف الفلكية الأكثر إثارة للاهتمام ليس لديهم النجوم الساطعة بما فيه الكفاية في مكان قريب. حل واحد هو التركيز شعاع ليزر عالية الطاقة في اتجاه الهدف الفلكية لإنشاء مرجع الاصطناعية من الشكل المعروف، والمعروف أيضا باسم "نجمة دليل الليزر. و-AO الليزر روبو نظام البصريات التكيفية 2،3 يستخدم الليزر الأشعة فوق البنفسجية 10-W ركزت على مسافة 10 كم لتوليد نجم دليل الليزر. قياسات الاستشعار واجهة الموجة للنجم دليل الليزر قيادة التصحيح البصريات التكيفية مما أدى إلى حيود محدودة الصور التي لها القرار الزاوي ~ ثانية قوسية على 0،1 تلسكوب 1.5 متر.
وقد أقر لأول مرة تأثير الاضطرابات الجوية على التصوير الفلكي قرون مضت بواسطة كريستيان هيغنز 4 و إسحاق نيوتن 5. ونشرت أول المفاهيمي التكيف البصريات تصاميم للتعويض عن تأثير الاضطرابات بشكل مستقل من قبل شركة بابكوك هوراس 6 و 7 فلاديمير Linnik في 1950s. وزارة الدفاع الأمريكية بتمويل ثم تطوير النظم على التكيف والبصريات 1 في 1970s لغرض التصوير الاقمار الخارجية أثناء الحرب الباردة 8. بذل المجتمع المدني الفلكية نظم التقدم النامية في 1980s، ومع ذلك، بعد رفع السرية عن الأبحاث العسكرية على البصريات التكيفية في عام 1992 (المرجع 9)، كان هناك انفجار في عدد وتعقيد النظم الفلكية 10.
الغالبية العظمى من التلسكوبات نحو 20 مرئية وتحت الحمراء اليوم مع فتحات أكبر من 5 متر هي equippeد التكيف مع النظم البصرية (الحكام مثلا. 11-19). كما تصبح أكبر التلسكوبات، وبالتالي أكثر قدرة على جمع الضوء، وهناك مزيد من المكاسب في القرار والحساسية عند استخدام البصريات التكيفية. للأسف، واسعة على التكيف التلسكوب البصرية أنظمة معقدة للغاية وتقتصر في عملها على موجات الأشعة تحت الحمراء القريبة بسبب التكنولوجيا الحالية، بل تتطلب فرق من موظفي الدعم، وغالبا مع مراعاة النفقات العامة الكبيرة، والوصول إلى هذه الموارد النادرة والقيمة أيضا محدودة.
في الطرف الآخر من الطيف حجم، وهناك أيضا أكثر من مائة التلسكوبات في فئة متر 1-3، ولكن يتم تركيبها عدد قليل جدا من هذه مع عدسات التكيف. تصحيح الاضطراب في الغلاف الجوي، حتى في أقصر الأطوال الموجية المرئية، ويصبح لين العريكة مع التكنولوجيا الحالية على هذه التلسكوبات الصغيرة لأنها تبدو من خلال حجم أصغر بكثير من الاضطراب في الغلاف الجوي (الشكل 1). المبلغ الإجمالي للI-الاضطراباتnduced جداول الخطأ البصرية متناسب تقريبا مع مرآة قطرها تلسكوب الابتدائية وعكسيا مع الطول الموجي مراقبة. يمكن استخدام نفس التكنولوجيا والبصريات التكيفية التي يتم استخدامها مع الأشعة تحت الحمراء القريبة من الضوء على أكبر التلسكوبات مع الضوء المرئي على متواضعة الحجم التلسكوبات. بالإضافة إلى ذلك، العديد من التلسكوبات إما بهذا الحجم يتم تحديثه وتعديله (المرجع على سبيل المثال. 20) أو بنيت حديثا مع قدرات الروبوتية تماما، بعيد و / أو مستقلة (على سبيل المثال المرجع 21)، زيادة كبيرة في الفعالية من حيث التكلفة لهذه المرافق. اذا كان مزودا البصريات التكيفية، فإن هذه التلسكوبات توفير منصة قوية لمتابعة العديد من مجالات العلوم الفلكية التي هي على خلاف ذلك غير عملي أو مستحيلا مع تلسكوب كبير والبصريات التكيفية نظم 22. حيود محدودة من الدراسات الاستقصائية استهدفت عشرات الآلاف من أهداف 23،24، رصد طويل الأجل 25،26، وتوصيف عابر السريع في مجالات مزدحمة 27، من الممكن مع البصريات التكيفية على هذه الفتحات متواضعة.
لاستكشاف هذه المساحة اكتشاف جديد، وقد صممت ونفذت ونحن اقتصادية جديدة والبصريات التكيفية نظام لل 1-3 متر فئة التلسكوبات، AO-روبو (المراجع 2،3؛ الشكل 2). كما هو الحال مع غيرها من نظم التكيف والبصريات الليزر، روبو-AO تضم أنظمة رئيسية عدة: نظام ليزر؛ مجموعة من الالكترونيات، وأداة محمولة على التركيز Cassegrain التلسكوب في (وراء المرآة الأولية؛ الشكل 3) الذي يضم عالية السرعة مصراع الضوئية، وأجهزة الاستشعار واجهة الموجة، المصححين واجهة الموجة، وأدوات العلم ومصادر المعايرة. تصميم روبو-AO صفها هنا يوضح كيف نموذجي ليزر والبصريات التكيفية يعمل النظام من الناحية العملية.
جوهر نظام ليزر روبو-AO هو Q-الليزر فوق البنفسجية تحول 10-W شنت في تجميع جهاز العرض المغلقة على جانب التلسكوب. بدءا من الليزر نفسه، ليزرالعرض يتضمن ثم مصراع زائدة عن الحاجة، بالإضافة إلى مصراع الليزر الداخلية، للسلامة إضافية؛ لوحة نصف موجة لضبط زاوية الاستقطاب الخطي المتوقع، وتلميح إمالة المرآة الإرسال إلى كل من استقرار شعاع الليزر الظاهر موقف على السماء والثنية لتصحيح التلسكوب. عدسة محدبة ثنائية على مرحلة التركيز قابل للتعديل يوسع شعاع الليزر لملء خرج 15 سم فتحة عدسة، الذي المتقارن بصريا إلى المرآة بلاغ الخيمة. العدسة الناتج يركز ضوء الليزر لمسافة خط البصر من 10 كم. كما نبضات الليزر (~ 35 ميكرو ثانية NS طويلة كل 100) نشر عبر الغلاف الجوي بعيدا عن جهاز العرض، ونسبة ضئيلة من الفوتونات قبالة مبعثر رايلي جزيئات الهواء والعودة نحو تلسكوب (الشكل 2B). الفوتونات العودة متفرقة تنشأ على طول مسار التصاعدي كامل من الليزر، وعلى ما يبدو خلاف ذلك كما يشكل حلقة في سلسلة من شأنه أن يجعل القياسات واجهة الموجة غير دقيقة. في معاهد والبصريات التكيفيةيستخدم rument، خلية Pockels عالية السرعة الضوئية مصراع 28 إلى نقل ضوء الليزر العودة فقط من شريحة ضيقة فقط من الغلاف الجوي حول التقريب 10 كم العرض، مما أدى إلى ظهور الليزر كبقعة. والدافع التحول من الخلية Pockels من الساعة ماجستير نفس الليزر نابض، مع تأخير لحساب الوقت ذهابا وإيابا من نبضة ليزر من خلال الغلاف الجوي. في نهاية المطاف، تم الكشف عن واحد فقط في كل الفوتونات التي أطلقها تريليون الاستشعار واجهة الموجة. وحتى مع ذلك، فإن هذا التدفق اشعاعا كافية لتشغيل النظام على التكيف والبصريات.
ليزر الأشعة فوق البنفسجية لها فائدة إضافية تتمثل في كونها غير مرئية للعين البشرية، يرجع أساسا إلى امتصاص في القرنية والعدسة 29. على هذا النحو، فإنه غير قادر على فلاش التعمية الطيارين ويعتبر نظام الليزر من الفئة 1 (أي غير قادرة على إنتاج مستويات الإشعاع الضارة أثناء التشغيل ومعفاة من أي تدابير الرقابة 30) لذلك ممكناالتعرض للأشخاص في تحلق فوق، مما يلغي الحاجة لراصدي الإنسان يقع في الموقع كما هو مطلوب عادة من قبل هيئة الطيران الاتحادية في الولايات المتحدة 31. للأسف، قد امكانية ليزر لإتلاف بعض الأقمار الصناعية في المدار الأرضي المنخفض موجود. لهذا السبب، فمن المستحسن لمخاوف تتعلق بالسلامة والمسؤولية على حد سواء لتنسيق الأنشطة مع وكالة الليزر المناسب (على سبيل المثال مع الاستراتيجية الأميركية القيادة (القيادة الاستراتيجية الأمريكية) داخل الولايات المتحدة 32).
ومن المعروف أن أجهزة الاستشعار واجهة الموجة والذي يقيس ضوء الليزر الواردة في الصك Cassegrain روبو-AO كجهاز استشعار شاك هارتمان-33، وتضم مجموعة lenslet، والتتابع البصري والتصوير الاستشعار. مجموعة lenslet عنصر الانكسار الضوئي، شقة على جانب واحد، مع شبكة من مربعة الشكل المحدب العدسات على الجانب الآخر. وهو موجود على موقع المتقارن بصريا إلى تلميذ مدخل للتلسكوب. عندما 'ضوء العودة "من اله الليزر يمر عبر مجموعة lenslest، يتم إنشاء الصور من الليزر على السماء في تركيز كل من العدسات في مجموعة (الشكل 4). ثم يتم هذا النمط من الصور ليزر ترحيل بصريا إلى UV-الأمثل التكاليف إلى جانب كاميرا (CCD) الجهاز. موقف س ص الوحشي من كل صورة يعطي قدرا من التدرج المحلية أو 'المنحدر' موجة الضوء من خلال العدسة كل من الصفيف. نسبة الإشارة إلى الضوضاء من كل قياس الموقف مع روبو-AO تتراوح من 6 إلى ظروف اعتمادا على زاوية رؤية وزينيث 10 (6.5 الإلكترونات من الضوضاء كاشف في كل أربعة بكسل مع إشارة تتراوح 100 حتي 200 الالكترونات الضوءيه لكل صورة في القياس).
ثم يتم حساب الشكل العام للموجة الضوء عن طريق ضرب المنحدرات تقاس مصفوفة واجهة الموجة reconstructor قبل محسوب. يتم إنشاء مصفوفة reconstructor بجعل أول نموذج للهندسة التلميذ الذي هو شبه مقسوما على مجموعة lenslet. فرد العادي اورثو أساسوأدرك أكثر من النموذج و2-D المربعات الصغرى حل للطائرة أنسب عبر كل عدسة؛ ظائف (المرجع 34 وظائف القرص في هذه الحالة التوافقية إلى النظام شعاعي ال 11، أي ما مجموعه من 75 وظائف). ويحسب في الصفيف. في حين أن هذا لترسم التدرج المتوسط، والفرق لا يكاد يذكر من الناحية العملية، مع الاستفادة من التعامل مع بسهولة هندسة العدسات مضيئة جزئيا على حواف التلميذ المتوقعة. الناتج هكذا مصفوفة التأثير الذي يحول سعة وحدة لكل وظيفة مع المنحدر أساس تعويض عن كل عدسة. ثم يتم إنشاء مصفوفة reconstructor من خلال اتخاذ الزائفة معكوس المصفوفة التأثير باستخدام تجزئ القيمة المنفردة. مرة واحدة ومن المعروف أن شكل موجة الضوء من حيث معاملات مجموعة الأساس، يمكن قيادتها على شكل معكوس تعويضية على واجهة الموجة مصحح ذات الترتيب العالي. عملية اتخاذ القياس، ثم تطبيق التصحيح، وتكرار هذه الدورةمرارا وتكرارا، هو مثال على حلقة ضبط يتجزأ. روبو-AO تنفيذ الرقابة حلقة بمعدل قدره 1.2 كيلوهرتز، اللازمة لمواكبة ديناميات الغلاف الجوي. يتم تطبيق عامل المقياس (المعروف أيضا باسم الربح من الحلقة لمراقبة يتجزأ) من أقل من 1، وعلى مقربة عادة إلى 0.6، للإشارة تصحيح للحفاظ على الاستقرار في حلقة التحكم وتقليل الخطأ لا تزال متبقية من تصحيح ضوء.
مصحح واجهة الموجة عالية النظام داخل روبو-AO هو الصغيرة الكهربائية والميكانيكية نظم (MEMS) مرآة تشوه 35. روبو-AO يستخدم 120 المحركات لضبط سطح مضيئة من المرآة، كافية في القرار المكانية بدقة لتناسب شكل محسوبة تصحيح. والمحركات على أقصى انحراف سطح السعة من 3.5 ميكرون والتي تتطابق مع التعويض المرحلة الضوئية تصل إلى 7 ميكرومتر. في الظروف الجوية المعتادة في المراصد الفلكية، وهذا التعويض هو طول أكبر من 5 سيجما للبفعل اتساع الاضطرابات البصرية والخطأ في النتائج وبالتالي الإرتفاع تصحيح كبيرة. وعلاوة على ذلك، يمكن للمرآة تشوه تعويض عن الأخطاء البصرية الثابتة الناشئة عن الصك والتلسكوب على حساب النطاق الديناميكي مخفضة.
واحد لدقة باستخدام الليزر وتحقيقا للغلاف الجوي هو عدم قدرتها على قياس الحركة الفلكية الصورة 36. وينظر ضوء الليزر عودته من موقف تقريبا نفس التي من المتوقع أن تظهر، وبالتالي يجب دائما في نفس الموقع على السماء. ويهيمن أية الخيمة الشاملة قياس في موجة ضوء الليزر العودة من أجهزة الاستشعار واجهة الموجة من الأخطاء الميكانيكية لافتا. يتم استخدام إشارة الخيمة لدفع نظام ليزر في الإرسال بلاغ الخيمة مرآة، وبالتالي الحفاظ على نمط الكوخ-هارتمان تركزت على استشعار واجهة الموجة. تصحيح الصورة الفلكية الحركة تتم معالجة بشكل منفصل مع العلم الكاميرات كما هو موضح أدناه.
روبو-AO يستخدم4 خارج المحور مكافئ (OAP) المرايا لضوء التتابع من التلسكوب إلى الكاميرات العلوم achromatically (الشكل 3). مسار تتابع سريع يتضمن معلومات سرية الخيمة مرآة تصحيح فضلا عن مصحح التشتت الجوي (ADC) 37 يتألف من زوج من الدورية رشة عمل. وADC يحل مسألة معينة تتعلق مراقبة الكائنات عبر الغلاف الجوي التي ليست مباشرة فوق: الغلاف الجوي بمثابة المنشور وينكسر الضوء بوصفها وظيفة من الطول الموجي، مع التأثير الكلي تزداد قوة كما يشير التلسكوب أقل في الارتفاع، مما تسبب في صور – وخاصة تلك التي تم شحذ بواسطة تصحيح البصريات التكيفية – لتظهر ممدود في الاتجاه الطبيعي إلى الأفق. يمكن للADC إضافة مبلغ العكس من تشتت الضوء إلى واردة، على نحو فعال يلغي تأثير التشتت في الغلاف الجوي المنشورية (الشكل 5). في نهاية التتابع OAP هو مزدوج اللون واضحة على أن يعكس ضوء λ <950 نانومتر إلى الإلكترون تتضاعف التكاليف إلى جانب الكاميرا (EMCCD) الجهاز أثناء يحيل ضوء الأشعة تحت الحمراء نحو كاميرا الأشعة تحت الحمراء. الكاميرا EMCCD لديه القدرة على التقاط الصور مع إلكترونية منخفضة جدا (كاشف) 38،39 الضوضاء، بمعدل الإطار مما يقلل من الحركة داخل الصورة أدناه التعرض لهذا القرار حيود محدودة الزاوي. بواسطة تتمحور إعادة التراص وسلسلة من هذه الصور، يمكن توليفها صورة التعرض الطويل مع عقوبة الحد الأدنى من الضوضاء. يمكن أيضا أن تستخدم كاميرا EMCCD لتحقيق الاستقرار في حركة الصورة على كاميرا الأشعة تحت الحمراء، ويمكن استخدام وحدات القياس لموقف لمصدر الفلكية المصورة لقيادة باستمرار بسرعة بلاغ الخيمة لإعادة نقطة الصورة إلى الموقع المطلوب. قبل كل كاميرا هي عبارة عن مجموعة من العجلات تصفية مع مجموعة مناسبة من المرشحات الفلكية.
تم دمج جهاز محاكاة المنظار ومصدر داخلي في النظام روبو-AO كأداة المعايرة. يمكن أن الأشعة فوق البنفسجية في وقت واحد محاكاةالليزر في التركيز على بعد 10 كم ومصدر الأسود في اللانهاية، ومطابقة نسبة التلسكوب المضيف التنسيق والخروج موقف التلميذ. المرآة 1 أضعاف في غضون روبو-AO يوجه الضوء من جميع مرآة التلسكوب في الثانوية لنظام التكيف والبصريات. هي التي شنت أيضا مرآة أضعاف على خشبة المسرح الآلية التي يمكن ترجمتها للخروج من الطريق لكشف التلسكوب الداخلية وجهاز محاكاة المصدر.
بينما يهدف النظام روبو-AO للعمل بطريقة مستقلة تماما، ويمكن تنفيذ كل خطوة من الخطوات العديد من المراقبة البصريات التكيفية يدويا. هذا الإجراء خطوة بخطوة، مع شرح موجز، هو مفصل في القسم التالي.
الأسلوب المعروضة هنا يصف التشغيل اليدوي للنظام AO-روبو والبصريات التكيفية الليزر. في الممارسة العملية، AO-روبو تعمل بطريقة آلية، يتم التحكم في الغالبية العظمى من الإجراءات من قبل المنظم الروبوتية الذي يؤدي نفس الخطوات تلقائيا.
وقد تم تصميم نظام AO-روبو للنسخ المتماثل مباشرة بتكلفة متواضعة، مع المواد (~ USD600K) والعمل كونها جزء من تكلفة التلسكوب حتى 1.5 متر و. في حين أن هناك ما يقرب من 20 التلسكوبات البصرية في جميع أنحاء العالم أكثر من 5 أمتار في القطر، ومن المتوقع أن التلسكوبات في عدد من الدرجة 1-3 م كذلك أكثر من مائة واحد وبصفتها الدولة المضيفة المحتملة لروبو-AO استنساخ. بالإضافة إلى نشر النظام الحالي في تلسكوب 1.5-P60 متر، ويجري تطوير أول نأمل من الحيوانات المستنسخة العديد من التلسكوب IGO م 2-42 في ولاية ماهاراشترا، الهند، والبديل باستخدام النجوم الساطعة بدلا من الليزر لاستشعار واجهة الموجة هو كونها جommissioned في تلسكوب 1-m عند جبل الطاولة، CA 43. ويجوز للثورة في العلوم وحيود محدودة تكون في متناول اليد.
The authors have nothing to disclose.
يتم اعتماد نظام AO-روبو من خلال التعاون المؤسسات الشريكة، ومعهد كاليفورنيا للتكنولوجيا ومركز المشتركة بين جامعة لعلوم الفلك والفيزياء الفلكية، من قبل مؤسسة العلوم الوطنية تحت رقم 0906060-AST المنح وAST-0960343، من خلال منحة مقدمة من طن متري. كوبا الفلكي مؤسسة وهدية من اوسشين صموئيل.