Ce protocole décrit l'utilisation d'un flux de fibres creuses système d'ultrafiltration tangentielle concentration de l'échantillon et une dissociation de chaleur étapes alternatives pour la détection de aqueuse<em> Cryptosporidium</em> Et<em> Giardia</em> Espèces en utilisant la méthode EPA 1623.
Espèces Cryptosporidium et Giardia sont deux des plus répandus des protozoaires qui causent des épidémies d'origine hydrique diarrhéiques dans le monde. Afin de mieux caractériser la prévalence de ces agents pathogènes, la méthode EPA 1623 a été élaboré et utilisé pour surveiller les niveaux de ces organismes dans l'eau potable aux États-Unis fournit 12. Procédé comporte trois parties principales, la première est la concentration de l'échantillon dans lequel au moins 10 litres d'eau de surface brute est filtrée. Les organismes et les débris piégés sont ensuite élue du filtre et centrifugé pour concentrer davantage l'échantillon. La deuxième partie de la méthode utilise une procédure de séparation immunomagnétique où l'échantillon d'eau concentrée est appliquée à des billes immunomagnétiques qui se lient spécifiquement aux oocystes de Cryptosporidium et des kystes de Giardia permettant l'élimination spécifique des parasites des débris concentré. Ces kystes (oo) sont ensuite détachés des billes magnétiques par un procé dissociation acidecédure. La dernière partie de la méthode est la coloration par immunofluorescence et le dénombrement où (oo) kystes sont appliqués à une diapositive, taché, et énuméré par microscopie.
Méthode 1623 a quatre cotés systèmes concentration de l'échantillon pour capturer les oocystes de Cryptosporidium et des kystes de Giardia dans l'eau: filtres Envirochek (Pall Corporation, Ann Arbor, MI), les filtres Envirochek HT (Pall Corporation), les filtres Filta-Max (IDEXX, Westbrook, MA), ou centrifugation à flux continu (Haemonetics, Braintree, MA). Toutefois, le Cryptosporidium et Giardia recouvrements kystes et d'oocystes) ont beaucoup varié en fonction de la matrice des sources d'eau et les filtres utilisés 1,14. Un nouveau flux tangentiel à fibres creuses d'ultrafiltration (HFUF) système a récemment été montré pour être plus efficace et plus robuste à la récupération des oocystes de Cryptosporidium et les kystes de Giardia à partir de matrices d'eau différents, d'ailleurs, il est moins coûteux que l'option autre capsule de filtres et peut se concentrer de multiples pathogènes simultanément 1-3,5-8,10,11. En outre, des études antérieures par Hill et ses collègues ont démontré que le HFUF considérablement amélioré Cryptosporidium recouvrements des oocystes lors directement comparés avec les filtres HT Envirochek 4. D'autres modifications aux méthodes actuelles ont également été signalés à améliorer les performances des méthodes. Remplacement de la procédure de dissociation acide avec la chaleur de dissociation a été montré pour être plus efficace pour séparer Cryptosporidium des billes magnétiques dans certaines matrices 9,13.
Ce protocole décrit une méthode de modification de 1623 qui utilise le système de filtration HFUF nouvelle étape avec la chaleur de dissociation. L'utilisation de HFUF avec cette méthode modifiée est une alternative moins chère à l'APE actuels options Méthode de filtration 1623 et offre plus de souplesse en permettant la concentration des organismes multiples.
Tangentielle débit à fibres creuses d'ultrafiltration est une technique alternative et efficace pour la concentration initiale des oocystes de Cryptosporidium et des kystes de Giardia dans l'eau. Fibres creuses d'ultrafiltration est moins cher que les filtres traditionnels. Depuis il a la capacité de se concentrer des oocystes de Cryptosporidium et des kystes de Giardia à partir d'une variété de matrices d'eau différents, il est une alternative utile aux techniques de filtration actuelles utilisées pour la méthode EPA 1623. Comme avec la plupart des autres méthodes de filtration, d'ultrafiltration à fibres creuses est sujette à l'encrassement des échantillons très turbides. Eau à haute pression qui découlerait de l'encrassement du filtre, c'est pourquoi il est recommandé de surveiller la pression pendant la course de filtration. En plus de oocystes de Cryptosporidium et des kystes de Giardia, fibres creuses d'ultrafiltration a été montré qu'il était capable de se concentrer les bactéries et les virus 1-3,5,8. Fibres creuses d'ultrafiltration outlined dans cette méthode peut être utilisée pour concentrer des organismes multiples dans un seul échantillon. Il est à noter que l'obtention d'un volume final compris entre 200 et 250 ml est l'étape finale critique dans la procédure de concentration, afin que les étapes de centrifugation supplémentaires, qui peuvent entraîner une perte de kyste (oo), sont évités (étape 2.2). Cependant, ce qui permet le volume dans la bouteille d'abandonner trop faible peut avoir des effets défavorables sur les recouvrements car il ne sera pas un volume suffisant de liquide de forcer tous les oocystes ou des kystes dans la bouteille rétentat. Par conséquent, il est recommandé de maintenir un volume final compris entre 200 et 250 ml.
La chaleur de dissociation est une alternative à l'étape de dissociation acide dans la méthode 1623. Cette autre étape a été montré pour améliorer la récupération des oocystes de Cryptosporidium et de réduire la variation méthode lorsqu'il est isolé de la rivière soit ou 9 eau à réactif. Une comparaison côte à côte de l'acide et la chaleur de dissociation démontré que les méthodes utilisant la chaleur pour dissociationte les organismes des billes immunomagnétiques produit des recouvrements plus élevés pour les deux moyennes Cryptosporidium et Giardia. En outre, la précision des recouvrements Cryptosporidium et Giardia était meilleure dans les échantillons traités à la chaleur de dissociation par rapport à la dissociation acide 9.
L'incorporation de HFUF que l'étape de concentration permet une plus grande souplesse en offrant la possibilité de se concentrer de multiples organismes. En outre, il est une alternative moins coûteuse à la méthode de filtration options actuelles de 1623.
The authors have nothing to disclose.
Nous tenons à remercier Ann Grimm et Michael Zimmerman, pour examen critique de ce manuscrit et Doug Hamilton pour son soutien technique.
Equipment/Reagent | Vendor | Catalog # |
Asahi Kasei Rexeed 25 S/R wet hollow-fiber ultrafilters | Dial Medical | REXEED25S/R |
I/P 73 (Masterflex R-3603), or equivalent | Cole Parmer | EW-06408-73 |
L/S 24 (Masterflex Platinum-Cured), or equivalent | Cole Parmer | EW-96410-24 |
L/S 15 (Masterflex Platinum-Cured), or equivalent | Cole Parmer | EW-96410-15 |
L/S 36 (Masterflex Platinum-Cured), or equivalent | Cole Parmer | EW-96410-36 |
I/P Precision Brushless Drive | Cole Parmer | EW-77410-10 |
I/P Easy Load Pump Head | Cole Parmer | EW-77601-10 |
Black HDPE Tee, 1/4″x 3/8″ x 3/8″ | US Plastics | 62064 |
Masterflex T-connector L/S 15-25 | Cole Parmer | EG-30613-12 |
Nalgene heavy-duty pp 1 L bottle | Cole Parmer | EW-06257-10 |
10 ml pipettes | Fisher Scientific | 13-678-11C |
Nalgene filling/venting cap for 1/4″ tubing, 53B | Cole Parmer | EW-06258-10 |
Pressure gauge | Cole Parmer | A-680-46-10 |
Straight coupling, NPT(F), 1/4″ | Cole Parmer | EW-06469-18 |
NPT branch tee, natural pp | Cole Parmer | A-30610-75 |
Pinch clamps, 1/2″ | Cole Parmer | EW-06833-00 |
Custom fit DIN adapters | Molded Products Corp | MPC-855NS.250 |
Ring stand | Fisher Scientific | 14-670B |
Ring stand clamps | Fisher Scientific | 05-769-6Q |
Keck ramp clamp, 14mm | Cole Parmer | EW-06835-10 |
Sodium polyphosphate | Sigma Aldrich | 305553 |
Sodium thiosulfate pentahydrate | Sigma Aldrich | 72050 |
Antifoam Y-30 emulsion | Sigma Aldrich | A5758 |
Tween-80 | Sigma Aldrich | P1754 |
10 L Collapsible high-density polyethylene cubitainer | VWR | IR314-0025 |
Centrifuge bottle rack | Fisher Scientific | 05-663-103 |
250 ml conical centrifuge tubes | Corning | 430776 |
Disposable funnel | Cole Parmer | U-6122-10 |
Wash bottle | Cole Parmer | U-06252-40 |
Centrifuge | Beckman Coulter | Allegra X-15R |
Swinging bucket rotor | Beckman Coulter | ARIES SX4750 |
Centrifuge bucket adapters for 250 ml conical tubes | Beckman Coulter | 349849 |
200 μl large bore pipette tips | Fisher Scientific | 02-707-134 |
VacuShield Filter | Gelman | 629-4402 |
5 ml pipettes | Fisher Scientific | 13-678-11D |
Dynabeads: Cryptosporidium/Giardia combo kit | IDEXX | 73002 |
50 ml conical centrifuge tubes | Falcon | 352098 |
Dynal L10 flat sided tubes | IDEXX | 74003 |
Timer | VWR | 23609-202 |
Dynal MPC-6 magnet | IDEXX | 12002D |
1 ml pipettes | VWR | 53283-700 |
1.5 ml low adhesion microcentrifuge tubes | Fisher Scientific | 02-681-320 |
1000 μl pipette & corresponding barrier tips | Gilson | P1000/DF1000ST |
100 μl pipette & corresponding barrier tips | Gilson | P100/DF100ST |
9 inch Pasteur pipettes | VWR | 14672-412 |
Dynal MPC-S magnet | IDEXX | 12020D |
Vortex | VWR | 14216-188 |
Dynabeads rotator mixer | IDEXX | 94701 |
Heat block | Fisher Scientific | 11-718-2 |
Lab Armor Beads | Lab Armor | 42370-750 |
Digital thermometer | Fisher Scientific | 15-077-60 |
Phosphate-buffer saline 1X pH 7.4 (1X PBS) | Sigma | P4417 |
Single Spot slides | IDEXX | 30201 |
Cover glass | Corning | 287018 |
EasyStain direct kit | BTF | – |
10 μl pipette & corresponding barrier tips | Gilson | P10 & DF10ST |
4′,6′-Diamidino-2-phenyl indole dihydrochloride (DAPI) | Sigma | D9542 |
Clear nail polish | Fisher Scientific | S30697 |
Methanol | Fisher Scientific | L6815 |
Kimwipes | Kimberly Clark | 34155 |
Incubator | Boekel Scientific | 133000 |
slide warmer | Fisher Scientific | 11-474-521 |
Immersion oil, Type A ND= 1.515 | Nikon | MXA20234 |
Nikon 90i microscope with DIC capabilities | Nikon | MBA 77000 |
Plan APO 100X oil objective | Nikon | MRD01901 |
Plan Achro 20X | Nikon | MRL00202 |
FITC filter | Nikon | 96302 |
DAPI filter | Nikon | 96301 |
X-cite fluorescence illuminator | Nikon | 87540 |
Lens paper | Nikon | 76997 |
Biohazard disposable bag | Fisher Scientific | 01-829D |
Biohazard sharps container | Fisher Scientific | 14-827-117 |
3 % hydrogen peroxide | VWR | BDH3540-2 |
Bleach | Fisher Scientific | 1952030 |
Wypall | Kimberly Clark | 34790 |