Мы описываем метод сродство с метками очистки рекомбинантных белков с использованием жидкого обработки робототехники. Этот метод обычно применяется к мелким очистки растворимые His-меченных белков в высокой пропускной способности формате.
X-ray crystallography is the method of choice for obtaining a detailed view of the structure of proteins. Such studies need to be complemented by further biochemical analyses to obtain detailed insights into structure/function relationships. Advances in oligonucleotide- and gene synthesis technology make large-scale mutagenesis strategies increasingly feasible, including the substitution of target residues by all 19 other amino acids. Gain- or loss-of-function phenotypes then allow systematic conclusions to be drawn, such as the contribution of particular residues to catalytic activity, protein stability and/or protein-protein interaction specificity.
In order to attribute the different phenotypes to the nature of the mutation – rather than to fluctuating experimental conditions – it is vital to purify and analyse the proteins in a controlled and reproducible manner. High-throughput strategies and the automation of manual protocols on robotic liquid-handling platforms have created opportunities to perform such complex molecular biological procedures with little human intervention and minimal error rates1-5.
Here, we present a general method for the purification of His-tagged recombinant proteins in a high-throughput manner. In a recent study, we applied this method to a detailed structure-function investigation of TFIIB, a component of the basal transcription machinery. TFIIB is indispensable for promoter-directed transcription in vitro and is essential for the recruitment of RNA polymerase into a preinitiation complex6-8. TFIIB contains a flexible linker domain that penetrates the active site cleft of RNA polymerase9-11. This linker domain confers two biochemically quantifiable activities on TFIIB, namely (i) the stimulation of the catalytic activity during the ‘abortive’ stage of transcript initiation, and (ii) an additional contribution to the specific recruitment of RNA polymerase into the preinitiation complex4,5,12 . We exploited the high-throughput purification method to generate single, double and triple substitution and deletions mutations within the TFIIB linker and to subsequently analyse them in functional assays for their stimulation effect on the catalytic activity of RNA polymerase4. Altogether, we generated, purified and analysed 381 mutants – a task which would have been time-consuming and laborious to perform manually. We produced and assayed the proteins in multiplicates which allowed us to appreciate any experimental variations and gave us a clear idea of the reproducibility of our results.
This method serves as a generic protocol for the purification of His-tagged proteins and has been successfully used to purify other recombinant proteins. It is currently optimised for the purification of 24 proteins but can be adapted to purify up to 96 proteins.
Автоматизированные рекомбинантного метода очистки белков описано здесь позволяющий производства и очистки большого количества мутантных белков в небольшом масштабе формате при весьма воспроизводимых условиях с минимальным вмешательством человека. Рисунки 1 и 2 показывают результаты систематического контроля качества и примеры очищенных белков. 3 видно, что очищенная транскрипционных факторов, используемых в этом примере выполняет в высшей степени воспроизводимым образом в функциональном анализе.
Хотя процедура была разработана для очистки архейных TFIIB, он широко применяется для очистки сродство-меченных белков. Использование таких автоматизированных протоколы очистки, таким образом, значительно облегчит биохимический анализ рекомбинантных белков и таким образом углубить наше понимание белок-белковых взаимодействий в масштабах, которые трудно достичь вручную.
The authors have nothing to disclose.
Эта работа была поддержана Wellcome гранта (078043/Z/05/Z), чтобы ROJW
Name of the reagent | Company | Catalogue number | Comments (optional) |
Overnight Express Instant TB Medium | Merck Chemicals Ltd | 71491-4 | |
FastBreak | Promega Ltd. | V8573 | |
Lysonase Bioprocessing Reagent/ 1 ml | Merck Chemicals Ltd | 71230 | |
Antifoam 204 | Sigma-Aldrich Company Ltd | A6426 | |
MagneHis Ni-Particles | Promega | V8565 | |
Imidazole | Sigma-Aldrich Company Ltd | 56750 | |
Trizma base | Sigma-Aldrich Company Ltd. | 93362 | |
NaCl | VWR | 27810.295 | |
Bicinchoninic Acid protein determination | Sigma-Aldrich Company Ltd | BCA1-1KT | |
Deep Well Plate 2.2 ml Square Wells PP pk10 | Anachem Ltd | 1810-00 | |
Microplate MicroWell 96 well flat bottom polystyrene not treated 12 sleeves of 5 plates clear 0.4 ml well volume 128 mm x 86 mm Thermo Scientific Nunc | Fisher Scientific Ltd. | DIS-984-090M | |
Microplate Blue | VWR | NUNC367001 | |
24-Well Blocks RB (24) | Qiagen | 19583 | |
Guanidine hydrochloride | VWR | ALFAA13543.0B | |
Washable needle for TheOnyx | Aviso GmbH | 8152-317001 | |
Reagent Rack for Magnetic Beads | Aviso GmbH | 8152-035003 | |
Plate Reader Synergy HT | BioTek | 4200-000043 | |
Robotic Platform TheOnyx 44OH/150/100 | Aviso GmbH | 8145-050046 | |
Microplate Shaker Variomag Teleshaker | Inheco | 3800047 | |
96-well Magnet Type A | Qiagen | 36915 |