Un protocolo básico para la separación de fragmentos de ADN usando electroforesis en gel de agarosa se describe.
La agarosa electroforesis en gel es la forma más eficaz de separar fragmentos de ADN de diferentes tamaños que van desde 100 pb a 25 kb 1. La agarosa es aislado a partir de las algas géneros Gelidium y Gracilaria, y consta de agarobiose repetida (L y D-galactosa) subunidades 2. Durante la gelificación, los polímeros de agarosa asociación no covalente y formar una red de paquetes cuyo tamaño de poro determinar un gel de propiedades moleculares de tamizado. El uso de electroforesis en gel de agarosa revolucionado la separación del ADN. Antes de la adopción de geles de agarosa, el ADN se separó utilizando principalmente de densidad de sacarosa centrifugación en gradiente, que sólo proporcionan una aproximación de tamaño. Para separar el ADN utilizando electroforesis en gel de agarosa, el ADN se carga en prefabricados pozos en el gel y una corriente aplicada. El esqueleto de fosfato del ADN (y ARN) molécula está cargado negativamente, por lo tanto, cuando se coloca en un campo eléctrico, los fragmentos de ADN migrarán a la positively cargo del ánodo. Debido a que el ADN tiene un uniforme relación masa / carga, las moléculas de ADN se separan por tamaño en un gel de agarosa en un patrón tal que la distancia recorrida es inversamente proporcional al logaritmo de su peso molecular 3. El modelo principal para el movimiento de ADN a través de un gel de agarosa es "parcial reptación", con lo que el borde delantero se mueve hacia adelante y tira el resto de la molécula a lo largo de 4. La velocidad de migración de una molécula de ADN a través de un gel se determina por el siguiente: 1) el tamaño de la molécula de ADN, 2) la concentración de agarosa; 3) conformación de ADN 5, 4) la tensión aplicada, 5) presencia de bromuro de etidio, 6) de tipo de tampón de electroforesis en agarosa y 7). Después de la separación, las moléculas de ADN pueden ser visualizadas bajo luz UV después de la tinción con un colorante adecuado. Siguiendo este protocolo, los estudiantes deben ser capaces de:
Electroforesis en gel de agarosa ha demostrado ser una manera eficiente y eficaz de separar los ácidos nucleicos. Alta resistencia del gel de agarosa, permite la manipulación de los geles porcentuales bajos para la separación de grandes fragmentos de ADN. Tamizado molecular se determina por el tamaño de poros generados por los haces de agarosa 7 en la matriz de gel. En general, cuanto mayor sea la concentración de agarosa, menor es el tamaño de los poros. Tradicionales geles de agarosa son más eficaces en la separación de los fragmentos de ADN entre 100 pb y 25 kb. Para separar fragmentos de ADN de más de 25 kb, uno tendrá que utilizar campo pulso electroforesis en gel de 6, que implica la aplicación de corriente alterna a partir de dos direcciones diferentes. De este modo grandes fragmentos de ADN de tamaño están separados por la velocidad a la que ellos mismos reorientar con los cambios en la dirección de la corriente. Los fragmentos de ADN más pequeñas que 100 pb se separó más eficazmente mediante electroforesis en gel de poliacrilamida. A diferencia degeles de agarosa, la matriz de gel de poliacrilamida se forma a través de una reacción de radicales libres químico accionado. Estos geles son más delgados de mayor concentración, se corren en forma vertical y tienen una mejor resolución. En el ADN moderno secuenciación electroforesis capilar se utiliza, por lo que los tubos capilares se llenan con una matriz de gel. El uso de tubos capilares permite la aplicación de altas tensiones, lo que permite la separación de fragmentos de ADN (y la determinación de la secuencia de ADN) de forma rápida.
La agarosa se puede modificar para crear bajo punto de fusión a través de agarosa hidroxietilación. Agarosa de bajo punto de fusión se utiliza generalmente cuando el aislamiento de fragmentos de ADN separados se desea. Hidroxietilación reduce la densidad de empaquetamiento de los haces de agarosa, la reducción efectiva de su tamaño de poro 8. Esto significa que un fragmento de ADN del mismo tamaño se necesitará más tiempo para mover a través de un bajo punto de fusión en gel de agarosa en oposición a un estándar de gel de agarosa. Debido a que los haces de asociarse con un otroa través de interacciones no covalentes 9, es posible volver a fundir un gel de agarosa después de que se ha fijado.
EtBr es el reactivo más común usado para teñir ADN en geles de agarosa 10. Cuando se expone a la luz UV, los electrones en el anillo aromático de la molécula de etidio se activan, lo que conduce a la liberación de energía (luz) como el retorno electrones a estado fundamental. EtBr funciona por sí mismo intercalando en la molécula de ADN de una manera dependiente de la concentración. Esto permite una estimación de la cantidad de ADN en cualquier banda de ADN particular, sobre la base de su intensidad. Debido a su carga positiva, el uso de EtBr reduce la tasa de migración del ADN en un 15%. EtBr es un mutágeno y carcinógeno sospechoso, por lo tanto se debe proceder con cuidado al manipular geles de agarosa que lo contienen. Además, EtBr se considera un residuo peligroso y debe ser desechado de manera adecuada. Manchas alternativos para ADN en geles de agarosa son SYBR Gold, SYBR Green, cristal violeta y azul de metilo. De éstos,El azul de metilo y violeta cristal no requieren la exposición del gel a la luz UV para la visualización de las bandas de ADN, reduciendo así la probabilidad de mutación si la recuperación del fragmento de ADN desde el gel se desea. Sin embargo, sus sensibilidades son menores que el de EtBr. SYBR oro y verde SYBR son altamente sensibles, tintes UV dependientes con menor toxicidad que EtBr, pero son considerablemente más caros. Además, todos los tintes alternativos, o bien no puede ser o no funcionan bien cuando se añade directamente al gel, por lo tanto, el gel tendrá que ser teñido posterior después de la electroforesis. Debido a coste, facilidad de uso, y la sensibilidad, EtBr sigue siendo el tinte de elección para muchos investigadores. Sin embargo, en ciertas situaciones, como cuando la eliminación de residuos peligrosos es difícil o cuando los jóvenes estudiantes están realizando un experimento, un medio de contraste menos tóxicas pueden ser preferibles.
Tintes de carga utilizados en electroforesis en gel sirven para tres propósitos principales. Primero se añade a la densidad de la muestra, Permitiendo que se hunda en el gel. En segundo lugar, los tintes proporcionar color y simplificar el proceso de carga. Finalmente, los colorantes se mueven a velocidades estándar a través del gel, lo que permite la estimación de la distancia que los fragmentos de ADN han migrado.
Los tamaños exactos de los fragmentos de ADN separados puede determinarse trazando el registro del peso molecular de las distintas bandas de un estándar de ADN contra la distancia recorrida por cada banda. El estándar de ADN contiene una mezcla de fragmentos de ADN de tamaños predeterminados que pueden ser comparados contra las muestras de ADN desconocidos. Es importante señalar que las diferentes formas de ADN se mueven a través del gel a diferentes velocidades. ADN plásmido superenrollado, debido a su conformación compacta, se mueve a través de la más rápida en gel, seguido por un fragmento de ADN lineal del mismo tamaño, con la forma circular abierta viajar el más lento.
En conclusión, desde la adopción de geles de agarosa en la década de 1970 para la separación de ADN, que tienedemostrado ser una de las técnicas más útiles y versátiles en la investigación ciencias biológicas.
The authors have nothing to disclose.
Name of reagent | Company | Catalog number | Comments |
Agarose I | Amresco | 0710 | |
Boric acid | Sigma | B7901 | |
Bromophenol blue | Sigma | B8026 | |
EDTA | Sigma | E9884 | |
Ethidium bromide | Sigma | E7637 | Carcinogenic-needs to be disposed of as hazardous waste |
Glacial acetic acid | Fisher | BP2401-212 | Corrosive |
Glycerol | Fisher | G33-1 | |
Xylene cyanol FF | Sigma | X4126 | |
Tris base | Sigma | T1503 | |
Investigator/FX gel documentation system | Fotodyne | ||
Owl Easycast B1 mini gel electrophoresis system | Thermo Scientific | B1-PTM | |
EPS 301 power supply | GE Healthcare | 18-1130-01 |