Microbial biofilms are generally constituted by distinct subpopulations of specialized cells. Single-cell analysis of these subpopulations requires the use of fluorescent reporters. Here we describe a protocol to visualize and monitor several subpopulationswithin B. subtilis biofilms using fluorescence microscopy and flow cytometry.
Biofilm formation is a general attribute to almost all bacteria 1-6. When bacteria form biofilms, cells are encased in extracellular matrix that is mostly constituted by proteins and exopolysaccharides, among other factors 7-10. The microbial community encased within the biofilm often shows the differentiation of distinct subpopulation of specialized cells 11-17. These subpopulations coexist and often show spatial and temporal organization within the biofilm 18-21.
Biofilm formation in the model organism Bacillus subtilis requires the differentiation of distinct subpopulations of specialized cells. Among them, the subpopulation of matrix producers, responsible to produce and secrete the extracellular matrix of the biofilm is essential for biofilm formation 11,19. Hence, differentiation of matrix producers is a hallmark of biofilm formation in B. subtilis.
We have used fluorescent reporters to visualize and quantify the subpopulation of matrix producers in biofilms of B. subtilis 15,19,22-24. Concretely, we have observed that the subpopulation of matrix producers differentiates in response to the presence of self-produced extracellular signal surfactin 25. Interestingly, surfactin is produced by a subpopulation of specialized cells different from the subpopulation of matrix producers 15.
We have detailed in this report the technical approach necessary to visualize and quantify the subpopulation of matrix producers and surfactin producers within the biofilms of B. subtilis. To do this, fluorescent reporters of genes required for matrix production and surfactin production are inserted into the chromosome of B. subtilis. Reporters are expressed only in a subpopulation of specialized cells. Then, the subpopulations can be monitored using fluorescence microscopy and flow cytometry (See Fig 1).
The fact that different subpopulations of specialized cells coexist within multicellular communities of bacteria gives us a different perspective about the regulation of gene expression in prokaryotes. This protocol addresses this phenomenon experimentally and it can be easily adapted to any other working model, to elucidate the molecular mechanisms underlying phenotypic heterogeneity within a microbial community.
1. Labeling B. subtilis and Biofilm Formation Assay
2. Biofilm Dispersion and Cell Fixation
3. Fluorescence Microscopy
4. Quantification of Single Cells Using Flow Cytometry
4. Representative Results
When B. subtilis grows on a plate of the biofilm-inducing medium MSgg, biofilm formation is observed after three days of incubation at 30 °C 30. The biofilm shows strong consistency and it could be peeled off from the surface of the agar in one piece. Moreover, the biofilm shows a complex morphological architecture that is indicative of the distinct participating cell subpopulations (Fig. 5). For instance, production of the extracellular matrix in biofilms results in the formation of wrinkles on the surface of the colony. This feature can be correlated with the differentiation of the subpopulation of matrix producers 19. Similarly, the raising of aerial structures on the surface of the biofilm is indicative of the presence of a subpopulation of sporulating cells, since the spores localized in the apical area of these structures 30.
Examples of visualization of cell differentiation in a single-labeled and a double-labeled strain using fluorescence microscopy are represented in figure 6 and 7, respectively. The single-labeled strain harbors the fluorescent reporter PtapA-CFP that is expressed in the subpopulation of matrix producing cells. This subpopulation is responsible to produce and secrete the extracellular matrix that constitutes the biofilm (Fig. 6). The double-labeled strain harbors the reporter PtapA-CFP 26 and the additional reporter PsrfAA-YFP 31. This second reporter allows to monitor the subpopulation of cells responsible to secrete the signaling molecule surfactin, which triggers the signaling cascade to the differentiation of the matrix producers (Fig. 7). Subpopulation of matrix producers are false colored in blue while the subpopulation of surfactin producers is false colored in yellow.
Flow cytometry analysis using a single-labeled strain harboring the reporter PtapA-YFP is presented in figure 8. Untreated control strain not harboring any fluorescent protein genes showed a single population low relative fluorescence. Cells harboring PtapA-YFP in non biofilm-inducing conditions did not differentiate the subpopulation of matrix producers and the whole population showed low relative fluorescence. In biofilm-inducing condition, a subpopulation of cells with high relative fluorescence occurred, observed as a shoulder to the right of the low relative fluorescence peak 23.
Results obtained from flow cytometry analysis using a double-labeled strain are represented in figure 9 and 10. Figure 9 monitored the subpopulations of matrix producers and surfactin producers using the double-labeled strain PtapA-CFP, PsrfAA-YFP. As control of background fluorescence we used a strain not harboring any fluorescent protein genes. Next, we detected each subpopulation of matrix producers and surfactin producers in each fluorescence channel, using single-labeled strains as controls. The double-labeled strain PtapA-CFP, PsrfAA-YFP showed two subpopulations of cells expressing high levels of the fluorescent reporters. Each population is framed, showing that there is no overlap in the expression of the reporters between the two subpopulations of specialized cells 15. Similarly, flow cytometry analysis using double-labeled strain Pskf-YFP, PtapA-YFP is presented in figure 10. The reporter for the gene skf monitors the differentiation of the subpopulation of cannibals 32, which has been described to differentiate coordinately with the subpopulation of matrix producers 24. In this case, the double-labeled strain showed a single subpopulation of fluorescent cells expressing both YFP and CFP. This indicated that both cell differentiation pathways are coordinately activated in the same subpopulation.
Figure 1. Overall scheme of the Experiment. The protocol is divided in three main steps. The first step requires labeling the strain of B. subtilis with the reporter fusion that monitors the subpopulation of interest. Second, grow labeled strains in biofilm-inducing conditions. Third, disperse the biofilm and carry out single-cell analysis of the population using fluorescence microscope and flow cytometry.
Figure 2. Schematic representation of the integration vector pKM008. This vector integrates the reporter fusion of interest into the neutral locus amyE by double recombination. The promoter of interest (PtapA) is cloned into vector using the restriction sites EcoRI and HindIII. Then, the expression of the cfp gene is under the control of the promoter PtapA. The orientation of the genes in the plasmid is represented as an arrow.
Figure 3. Schematic representation of the integration vector pDR183. This vector integrates the reporter fusion of interest into the neutral locus lacA by double recombination. The fusion of interest (PtapA–cfp) is cloned into vector using the restriction sites EcoRI and BamHI. The orientation of the genes in the plasmid is represented as an arrow.
Figure 4. Scheme of the integration of the reporters into the chromosome of B. subtilis by double recombination. (A) B. subtilis chromosome has two neutral loci, amyE and lacA, to integrate reporter fusions without affecting the development of the biofilm. (B) Process of double recombination of pKM008. Linearized plasmid integrates into the genome of B. subtilis by double recombination. The reporter fusion integrates into the neutral locus in a stable manner.
Figure 5. Biofilm formation of B. subtilis NCIB3610. Process of bioflm formation of the strain B. subtilis NCIB 3610 when growing on the biofilm-inducing medium MSgg during three days at 30 °C. Sequential pictures of the development of biofilm were taken every 12h.
Figure 6. Visualization of the subpopulation of matrix producers under the fluorescence microscope. A sample from a biofilm of B. subtilis PtapA–cfp was fixed and examined under the fluorescence microscope. 200 ms of fluorescence excitation evidenced a subpopulation of cells emitting higher fluorescence than the rest of the cells. We considered this subpopulation as the subpopulation of matrix-producing cells. Scale bar is 3 μm.
Figure 7. Visualization of the subpopulation of matrix producers and surfactin producers under the fluorescence microscope. Sample from a biofilm of the B. subtilis P tapA-cfp, PsrfAA-yfp double-labeled strain was fixed and examined under the fluorescence microscope. Exposure time of 250 ms evidenced two subpopulations of cells emitting higher fluorescence than the rest of the cells. One subpopulation expressed YFP and it was detected exclusively using the YFP channel (false colored in yellow). This is the subpopulation of surfactin producers. Another subpopulation expressed CFP and it was exclusively detected using the CFP channel. This is the subpopulation of matrix producers. Scale bar is 3 μm.
Figure 8. Quantification of the subpopulation of matrix producers using 2-D flow cytometry. Dispersed cells from a biofilm of B. subtilis PtapA-yfp were monitored using flow cytometry. The flow cytometer counted 50.000 events and the fluorescence signal for each event was monitored. Number of cells counted is plotted in Y axis while the intensity of YFP signal is plotted in the X axis. Cells were grown in LB medium to obtain non-biofilm inducing conditions. Cells were grown in MSgg medium to obtain biofilm-inducing conditions. The subpopulation of matrix producers differentiates only in biofilm-inducing conditions. This figure was adapted from López et al., PNAS (2009) 106:280-285.
Figure 9. Quantification of the subpopulation of matrix producers and surfactin producers using 3-D flow cytometry. Fluorescence signal of the channels monitored are presented in the X axis (for YFP) and Y axis (for CFP). The Z-axis measures the number of cells expressing each reporter and it is quantified as contour isolines perpendicular to the plane of the paper. The number of events monitored in this experiment was 50.000 events. Left upper panel presents a control of background fluorescence harboring no fluorescent protein genes. Right upper panel detects the subpopulation of surfactin producers in the YFP fluorescence channel (framed in yellow) using a single-labeled strain PsrfAA-YFP. Left bottom panel detects the subpopulation of matrix producers in the CFP fluorescence channel (framed in blue) using a single-labeled strain PtapA-CFP. The double-labeled strain PtapA-CFP, PsrfAA-YFP is monitored in the right bottom panel. It showed two subpopulations that are framed in yellow and blue. This figure was adapted from López et al., Genes and Development (2009) 23:1631-1638.
Figure 10. Quantification of the subpopulation of matrix producers and cannibals using 3-D flow cytometry. Fluorescence signal of the channels monitored are presented in the X axis (for YFP) and Y axis (for CFP). The number of events monitored in this experiment was 50.000. Right upper panel detects the subpopulation of cannibals in the YFP fluorescence channel (framed in yellow) in a single-labeled strain Pskf-YFP. Left bottom panel detects the subpopulation of matrix producers in the CFP fluorescence channel (framed in blue) in a single-labeled strain PtapA-CFP. The double-labeled strain PtapA-CFP, Pskf-YFP showed only one subpopulation of cells in diagonal to the X and Y axes (framed in green). This subpopulation is detected in the YFP and CFP channel because it expresses the two reporters simultaneously. López et al., Genes and Development (2009) 23:1631-1638.
The fact that bacterial communities show subpopulations of cells expressing specific set of genes evidences the complexity of microbial communities 33,34. This protocol should help to determine whether the expression of any gene of interest is restricted to a particular subpopulation of specialized cells within the microbial community. Visualization of these subpopulations requires the development of new techniques, because traditional methods to monitor gene expression or microarray analysis rate the levels of gene expression to the whole microbial community and fluctuations of gene expression within the microbial community are generally missed.
Fluorescence microscopy and flow cytometry complement ideally for the analysis of cell types to provide a combination of qualitative and quantitative that will define of the subpopulation of interest. Limitations of both techniques make them necessary to refer to each other for the sake of accuracy of the measurements. In the case of fluorescence microscopy, the intensity of the signal from fluorescent cells (and sometimes the size of the subpopulation) varies depending on the exposure time used to excite the samples (normally between 50 and 200 msec). In the case of the flow cytometry however, the small size of the bacterial cells limits the detection and some bacterial cannot be monitored. Due to cell size restrictions, the fluorescence signal emitted by the reporter should be high enough to allow the detection of fluorescence and, precisely because of this, we have experienced problems in the detection of cells expressing reporters with low expression level. However, new flow cytometers now come with a more sensitive detection limit, which allows us to monitor bacterial populations in a more precise manner. Additionally, the higher sensitivity in the detection limit will allow us to assay for cell sorting, to isolate the subpopulation of cells we are interested in and carry out gene expression analysis in this particular subpopulation.
The authors have nothing to disclose.
This work is funded by the Young Investigator Research Program, from the Centre for Infectious Disease Research (ZINF) from the University of Würzburg. Juan C Garcia-Betancur is a PhD fellow from the Graduate School of Life Sciences (GSLS) of the University of Würzburg.
Technique | Name of the reagent | Company | Catalog number |
MSgg composition | potassium phosphate 5mM | Roth | 6878 |
MOPS 100mM | Sigma-Aldrich | M1254 | |
Magnesium chloride 2mM | Roth | 2189.1 | |
Calcium chloride 700μM | Roth | A119.1 | |
Ferric chloride 50μM | Sigma-Aldrich | 157740 | |
Zinc chloride 1μM | Applichem | A2076 | |
Thiamine 2μM | Sigma-Aldrich | 74625 | |
Glycerol 0.5% | Roth | 7533 | |
Glutamate 0.5% | Sigma-Aldrich | 49621 | |
Tryptophan 50μg/ml | Sigma-Aldrich | T0254 | |
Phenylalanine 50μg/ml | Sigma-Aldrich | P2126 | |
Cell fixation | Paraformaldehyde | Roth | 0335 |
Name of the equipment | Company | Catalog number | |
Sonication | Cell Sonicator | Bandelin | D-1000 |
Fluorescence Microscopy | Fluorescence Microscope | Leica | DMI6000B |
Name of the software | Company | Catalog Number | |
Fluorescence Microscopy | AsaF | Leica | |
Flow cytometry | FCASDiva | BD | |
Flow cytometry | FlowJo | Treestar |