Summary

移动硅探针的神经行为鼠害的大型记录

Published: March 04, 2012
doi:

Summary

我们描述了多个单单位的大型录音和行为与硅探针的啮齿动物的局部场电位的方法。驱动器制造,探针附着到驱动器和探针植入过程容易复制足够的细节说明。

Abstract

在神经科学中的一个主要挑战是连接到神经集会集体活动的行为。神经元和电路的输入输出关系的理解与空间的选择性和时空分辨率,适用于机械分析神经合奏动物的行为,即孤立的单个神经元代表性的大样本的录音需要的方法。乐团的神经元活动的监测显着进展在过去十年中,小型和大型脑的动物,包括人类受试者1-11。多个录制现场与以硅为基础的设备,特别是有效的,因为他们的可扩展性,体积小和几何设计。

在这里,我们描述了多个单个神经元和在啮齿动物的行为,使用市售的微加工硅探针定制的配套部件的局部场电位记录方法。有两架F基本选项或接口前置放大器的硅探针:印刷电路板和柔性电缆。探头供电公司( http://www.neuronexustech.com/ ; http://www.sbmicrosystems.com/ ; http://www.acreo.se/ ),通常会提供粘接服务和提供保税印刷电路板的探头或软电缆。在这里,我们描述了一个4柄,32现场灵活的聚酰亚胺电缆连接到探头的植入,装在一个可移动的微型硬盘。探针制备的每一步,Microdrive微型建设和手术说明,使最终用户可以很容易地复制过程。

Protocol

1。建设的Microdrive 所有驱动器是由相同的基本元素:运动的一部分,它带有电极和一个固定的部分,这是固定的头骨。一个理想的微硬盘允许平稳,但长期在多个小步骤的电极足够的旅行,是足够坚固,以​​防止意外移动电极,容易操作,而不会干扰动物的行为,具有体积小,重量轻的实验者。由于这些竞争要求的结果,不同的驱动器套件不同的应用程序。 <p class="jove_co…

Discussion

这部影片展示了植入硅探针行为大鼠慢性大型录音程序。来自生物(脑组织)和技术(硅棒)材料的​​脆弱性的关键步骤,以确保神经元活动的质量记录。应采取特别的照顾,同时处理的探头,以避免任何接触与任何远程的“硬”的表面(例如,柄将打破,如果试图在大脑中植入他们不删除硬脑膜)柄。同样,任何脑组织的损伤(同时准备植入大脑表面,或碰撞,一旦它被植入到探针或驱动器?…

Divulgations

The authors have nothing to disclose.

Acknowledgements

居里夫人国际传出奖学金(欧盟的FP/2007-2013的赠款协定,#221834和254780),JD麦克唐纳基金会NSF资助SBE 0542013,国家格兰特NS034994卫生研究院,国家格兰特MH5467心理健康研究所和霍华德休斯医学研究所(Janelia农场研究校园补助金)。

Materials

Name Type Company Catalog Number Comments
Silicon probe Buzsaki32, 4 shanks x 8 sites. Packaging: flexible polyamide cable Material NeuroNexus Probe: buzsaki32
Packaging: HC32
Recording probe
Round Brass Screw, 00-90 x 1/2 Round Brass Screws Material JIMorris R0090B500 Drive part
Brass Hex Nut, 00-90 Material JIMorris N0090B Drive part
Brass C260 Strip, ASTM-B36
Thickness: 0.025″, Length: 12″, Width: 1/2″
Material Small Parts B000FMYU72 Drive part
Connector Header, pitch 2mm, male, single row, straigt, 36 positions Material Digikey 2163S-36-ND Drive part
2-part Sylgard silicon Elastomer Material World Precision Instruments SYLG184 To extra-insulate the probe
Decon Contrad 70 Liquid Detergent Reagent Fisher Scientific 04-355
Decon Laboratories
No.:1002
To clean the recording sites
Impedance Conditioning Module Equipment FHC Inc. 55-70-0 Impedance meter
niPOD – 32 channels Equipment Neuronexus niPOD -32 Impedance meter
Grip Cement Industrial Grade Material Caulk Dentsply 675571 (powder)
675572 (solvent)
Grip cement
1,1′-dioctadecyl-3,3,3′,3′-tetramethylindocarbocyanine perchlorate (‘DiI’; DiIC18(3)) Reagent Invitrogen D282 To stain the probe track in the brain
Stainless Steel Machine Screw, Binding Head, Slotted Drive, #00-90, 1/8″ Material Small Parts MX-0090-02B Ground and reference screws
Magnet wire, 20G, nylon-polyurethane coating, MW80 Material Small Parts B000IJYRP2 Ground and reference wire
Stainless Steel Machine Screw, Binding Head Slotted Drive, #000-120, 1/16″ Material Small Parts MX-000120-01B Anchor screws
N-3 All purpose Flux Liquid Reagent La-Co (Markal) 23512 Allows to solder stainless-steel
MicroGrid Precision Expanded Copper Material Dexmet 3 CU6-050 FA Copper mesh for on-head Faraday cage
C&B-METABOND Quick! Cement System – Dentin Activator Material Parkell S380  
C&B-METABOND Quick! Cement System – Dental cement Material Parkell S380  
Sharp point tungsten needle and holder Tool Roboz Surgical instruments RS-6064 and RS-6061 To make the hook to lift the dura
Carbide Bur HP 1/4 Tool Henry Schein 9990013  
Paraffin (Granules) Material Fisher Scientific P31-500  
Mineral Oil, Light (NF/FCC) Material Fisher Scientific O121-1  
GC ELECTRONICS 10-114 2-Part Epoxy Adhesive Material Newark 00Z416  
Type 1 LITZ 21 AWG 40/36 Red Single Polyurethane-Nylon (MW80-C) TO 0.041″+/-0.002″ OD Material New England Wire Technologies Corporation N28-36E-400-2 To make the cable between the headstage and the amplifier
32-channel Very Large Scale Integration headstage, 20x gain Equipment Plexon HST/32V-G20 Headstage

References

  1. Buzsáki, G. High-frequency network oscillation in the hippocampus. Science. 256, 1025-1027 (1992).
  2. Wilson, M. A., McNaughton, B. L. Dynamics of the hippocampal ensemble code for space. Science. 261, 1055-1058 (1993).
  3. Buzsáki, G. Large-scale recording of neuronal ensembles. Nat. Neurosci. 7, 446-451 (2004).
  4. Buzsáki, G. Visualizing Large-Scale Patterns of Activity in the Brain: Optical and Electrical Signals. Society for Neuroscience. , (2004).
  5. Nicolelis, M. A. L. . Methods for Neural Ensemble Recordings. , (2008).
  6. Hatsopoulos, N. G., Donoghue, J. P. The science of neural interface systems. Annu. Rev. Neurosci. 32, 249-266 (2009).
  7. Battaglia, F. P. The Lantern: an ultra-light micro-drive for multi-tetrode recordings in mice and other small animals. J. Neurosci. Methods. 178, 291-300 (2009).
  8. Kloosterman, F., Davidson, T. J. Micro-drive Array for Chronic in vivo Recording: Drive Fabrication. J. Vis. Exp. 26, e1094-e1094 (2009).
  9. Nguyen, D. P., Layton, S. P. Micro-drive Array for Chronic in vivo Recording: Tetrode Assembly. J. Vis. Exp. (26), e1098-e1098 (2009).
  10. Haiss, F., Butovas, S., Schwarz, C. A miniaturized chronic microelectrode drive for awake behaving head restrained mice and rats. J. Neurosci. Methods. 187, 67-72 (2010).
  11. Cerf, M. On-line, voluntary control of human temporal lobe neurons. Nature. 467, 1104-1108 (2010).
  12. Kohn, D. F. Anesthesia and Analgesia in Laboratory Animals. American College of Laboratory Animal Medicine. series, (1997).
  13. Schjetnan, A. G. P., Luczak, A. Recording Large-scale Neuronal Ensembles with Silicon Probes in the Anesthetized Rat. J. Vis. Exp. (56), e3282-e3282 (2011).
  14. Paxinos, G., Watson, C. The Rat Brain. Stereotaxic Coordinates. , (1982).
  15. Harris, K. D. Accuracy of tetrode spike separation as determined by simultaneous intracellular and extracellular measurements. J. Neurophysiol. 84, 401-414 (2000).
  16. Hazan, L., Zugaro, M., Buzsáki, G. Klusters, NeuroScope, NDManager: a Free Software Suite for Neurophysiological Data Processing and Visualization. J. Neurosci. Methods. 155, 207-216 (2006).
  17. Kipke, D. R. Advanced neurotechnologies for chronic neural interfaces: new horizons and clinical opportunities. J. Neurosci. 28, 11830-11838 (2008).
  18. Csicsvari, J. Massively parallel recording of unit and local field potentials with silicon-based electrodes. J. Neurophysiol. 90, 1314-1323 (2003).
  19. Sodagar, A. M., Wise, K. D., Najafi, K. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed. Eng. 54, 1075-1088 (2007).
  20. O’Connor, D. H., Huber, D., Svoboda, K. Reverse engineering the mouse brain. Nature. 461, 923-929 (2009).
  21. Boyden, E. S. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263-1268 (2005).
  22. Zhang, F. Circuit-breakers: optical technologies for probing neural signals and systems. Nat. Rev. Neurosci. 8, 577-581 (2007).
  23. Royer, S. Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur. J. Neurosci. 31, 2279-2291 (2010).

Play Video

Citer Cet Article
Vandecasteele, M., M., S., Royer, S., Belluscio, M., Berényi, A., Diba, K., Fujisawa, S., Grosmark, A., Mao, D., Mizuseki, K., Patel, J., Stark, E., Sullivan, D., Watson, B., Buzsáki, G. Large-scale Recording of Neurons by Movable Silicon Probes in Behaving Rodents. J. Vis. Exp. (61), e3568, doi:10.3791/3568 (2012).

View Video