Summary

光谱共焦成像的荧光标记的尼古丁受体敲在慢性尼古丁政府小鼠

Published: February 10, 2012
doi:

Summary

我们已经开发出一种量化烟碱型乙酰胆碱受体亚地区的中枢神经系统神经元的具体亚型内的变化,更好地了解使用爆震的方法和光谱用荧光蛋白标记的受体相结合的办法,包括对尼古丁成瘾的机制的新技术共聚焦成像。

Abstract

配体门控离子通道,在中枢神经系统(CNS)有牵连的有严重的医疗和社会后果的许多条件。例如,通过吸烟尼古丁成瘾的首要原因是全球过早死亡(世界卫生组织)和可能造成的离子通道分布在大脑中的变更1。慢性尼古丁暴露于啮齿动物和人类的烟碱乙酰胆碱受体(nAChRs)的脑组织1-3人数增加的结果。同样,在谷氨酸GluN1或GluA1渠道,改变已牵连到其它能使人成瘾的药物,如可卡因,安非他明和鸦片4-6引发过敏。

因此,映射和量化特定的离子通道的分布和表达模式的能力是极为重要的理解成瘾的机制。研究大脑的特定区域的EF个别药物fects先进的技术,如放射性配体的问世。然而,低放射性配体结合的空间分辨率,防止量化在特定的神经元亚型配体门控离子通道的能力。

基因编码的荧光记者,如绿色荧光蛋白(GFP)和它的许多颜色的变种,7生物学领域的一个革命性的基因标记内源性蛋白,可以可视化的蛋白质在体内 7-10荧光记者。用探针荧光标记蛋白质的优势之一是消除抗体的使用,有目标蛋白的非特异性和无障碍的问题。我们已经用这种战略荧光标签nAChRs,这使福斯特共振能量转移(FRET)在转染细胞培养11受体装配研究。最近,我们已经使用了KNOCK-工程师与黄色荧光蛋白标签胆碱受体α4亚基(α4YFP)的,能够精确量化的亚微米决议通过光谱共焦显微镜12中枢神经系统的神经元的受体体外小鼠的方法。针对性的荧光敲在突变中的内源性的轨迹和其本地子的控制之下,成立生产受体的表达和调控的正常水平相比,在野生型小鼠无标记的受体时。这个连锁反应中的方法可以扩展到其他离子通道的荧光标记,并提供了一​​个可视化和量化受体在中枢神经系统的功能强大的方法。

在本文中,我们描述了一种方法来量化在特定的中枢神经系统神经元暴露后慢性尼古丁胆碱受体表达的变化。我们的方法包括微型渗透泵植入术,心内灌注固定,成像和荧光标记的烟碱REC分析eptor亚基从α4YFP敲入小鼠(图1)。我们已经优化了固定技术,从固定脑tissue.We的,以尽量减少自体荧光,在详细描述我们的成像方法,利用光谱共聚焦显微镜结合线性光谱分离算法减去autofluoresent为了准确地获取α4YFP荧光信号的信号。最后,我们表明慢性尼古丁诱导的海马内侧perforant的路径α4YFP受体上调的结果。

Protocol

1。泵植入术泵植入前,填写,并准备在Alzet微型渗透泵(Alzet,型号2002年,库珀蒂诺,美国),小心不要引入气泡。这种微型渗透泵的模型提供了0.5微升/小时的速度在14天的解决方案。保证无菌的条件。权衡空和填充泵。在实验(移植后10天)结束,剩余的液体在泵可去除注射器和针头,称重,计算容积泵。 泵与控制解决方案包含生理盐水(0.9%W / V,Teknova,S5819,霍利斯特,美国…

Discussion

<p class="jove_content">在敲在小鼠模型,以确定一个特定的离子通道的数量和本地化的荧光受体的使用提供了许多优势。相反,如肌动蛋白,它是无处不在所有细胞中表达的蛋白质,离子通道是目前人数要少得多,并作出准确的分析,通过免疫组化技术挑战传统的神经元亚型之间的表达变化。在α4YFP基因产物表达野生型水平相同的启动子,增强和贩卖机制的控制下,<sup> 12</sup>。荧光受体也显示了相同的WT离子通…

Divulgations

The authors have nothing to disclose.

Acknowledgements

安东尼仁达支持由维多利亚大学研究生奖学金奖。这项研究是由自然科学和工程研究理事会,加拿大发现格兰特,NARSAD青年研究者奖(RN)的维多利亚基金会 – Myre和王佩瑜SIM基金,创新补助金,加拿大不列颠哥伦比亚省知识发展基金,基金会的支持一个自然的科学和工程研究理事会,加拿大研究工具和仪表格兰特。我们感谢优秀的鼠标畜牧业吉利安麦基,克里斯蒂娜巴恩斯,阿里尔·沙利文,珍妮弗·麦克唐纳和丹尼尔·莫尔加多。

Materials

Name of the reagent Company Catalogue number Comments
mini-osmotic pumps Alzet model 2002  
saline Teknova S5819  
(-)-nicotine hydrogen tartrate salt Sigma N5260  
eye drops Novartis Tear-Gel  
Vetbond glue 3M 1469SB  
heparin sodium salt Sigma H4784  
10x PBS Invitrogen 70011  
ketamine Wyeth Animal Health 0856-4403-01  
medatomidine hydrochloride Pfizer 1950673  
23G butterfly needle Becton Dickinson 367253  
paraformaldehyde Electron Microscopy Sciences 15710  
plastic embedding mold VWR 18986-1  
O.C.T. Mounting Compound Tissue-Tek 4583  
Mowiol 4-88 EMD-Calbiochem 475904 pH 8.5

References

  1. Perry, D. C., Davila-Garcia, M. I., Stockmeier, C. A., Kellar, K. J. Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J. Pharmacol. Exp. Ther. 289, 1545-1552 (1999).
  2. Schwartz, R. D., Kellar, K. J. Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science. 220, 214-216 (1983).
  3. Marks, M. J., Burch, J. B., Collins, A. C. Effects of chronic nicotine infusion on tolerance development and nicotinic receptors. J. Pharmacol. Exp. Ther. 226, 817-8125 (1983).
  4. Carlezon, W. A. J., Nestler, E. J. Elevated levels of GluR1 in the midbrain: a trigger for sensitization to drugs of abuse. Trends Neurosci. 25, 610-615 (2002).
  5. Fitzgerald, L. W., Ortiz, J., Hamedani, A. G., Nestler, E. J. Drugs of abuse and stress increase the expression of GluR1 and NMDAR1 glutamate receptor subunits in the rat ventral tegmental area: common adaptations among cross-sensitizing agents. J. Neurosci. 16, 274-2782 (1996).
  6. Saal, D., Dong, Y., Bonci, A., Malenka, R. C. Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron. 37, 577-5782 (2003).
  7. Tsien, R. Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509-544 (1998).
  8. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W., Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science. 263, 802-805 (1994).
  9. Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T., Wallace, M. Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron. 28, 41-51 (2000).
  10. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A. Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature. 450, 56-62 (2007).
  11. Nashmi, R., Dickinson, M. E., McKinney, S., Jareb, M., Labarca, C., Fraser, S. E. Assembly of α4β2 nicotinic acetylcholine receptors assessed with functional fluorescently labeled subunits: effects of localization, trafficking, and nicotine-induced upregulation in clonal mammalian cells and in cultured midbrain neurons. J. Neurosci. 23, 11554-11567 (2003).
  12. Nashmi, R., Xiao, C., Deshpande, P., McKinney, S., Grady, S. R., Whiteaker, P. Chronic nicotine cell specifically upregulates functional α4* nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J. Neurosci. 27, 8202-8218 (2007).
  13. Dickinson, M. E., Bearman, G., Tilie, S., Lansford, R., Fraser, S. E. Multi-spectral imaging and linear unmixing add a whole new dimension to laser scanning fluorescence microscopy. BioTechniques. 31, 1272-1278 (2001).
  14. Nashmi, R., Fraser, S. E., Lester, H., Dickinson, M. E., Periasamy, A., Day, R. N. . Molecular imaging: fret microscopy and spectroscopy. , 180-192 (2005).
  15. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V., Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2-YFP FRET pair. FEBS Lett. 531, 245-249 (2002).
  16. Larson, J. M. The Nikon C1si combines high spectral resolution, high sensitivity, and high acquisition speed. Cytometry A. 69, 825-8234 (2006).
  17. Melvin, N. R., Sutherland, R. J. Quantitative caveats of standard immunohistochemical procedures: implications for optical disector-based designs. J. Histochem. Cytochem. 58, 577-5784 (2010).
  18. Jones, I. W., Wonnacott, S. Why doesn’t nicotinic ACh receptor immunoreactivity knock out. Trends Neurosci. 28, 343-345 (2005).
  19. Moser, N., Mechawar, N., Jones, I., Gochberg-Sarver, A., Orr-Urtreger, A., Plomann, M. Evaluating the suitability of nicotinic acetylcholine receptor antibodies for standard immunodetection procedures. J. Neurochem. , (2007).
  20. Whiteaker, P., Cooper, J. F., Salminen, O., Marks, M. J., McClure-Begley, T. D., Brown, R. W., Collins, A. C., Lindstrom, J. M. Immunolabeling demonstrates the interdependence of mouse brain a4 and b2 nicotinic acetylcholine receptor subunit expression. The Journal of Comparative Neurology. 499, 1016-1038 (2006).
  21. Marks, M. J., McClure-Begley, T. D., Whiteaker, P., Salminen, O., Brown, R. W. B., Cooper, J., Collins, A. C., Lindstrom, J. M. Increased nicotinic acetylcholine receptor protein underlies chronic nicotine-induced up-regulation of nicotinic agonist binding sites in mouse brain. The Journal of Pharmacology and Experimental Therapeutics. , 337-3187 (2011).
  22. Marks, M. J., Rowell, P. P., Cao, J. Z., Grady, S. R., McCallum, S. E., Collins, A. C. Subsets of acetylcholine-stimulated 86[Rb]+ efflux and 125[I]-epibatidine binding sites in C57BL/6 mouse brain are differentially affected by chronic nicotine treatment. Neuropharmacology. 46, 1141-1157 (2004).
  23. King, S. L., Caldarone, B. J., Picciotto, M. R. Beta2-subunit-containing nicotinic acetylcholine receptors are critical for dopamine-dependent locomotor activation following repeated nicotine administration. Neuropharmacology. 47, 132-139 (2004).
  24. Robinson, S. F., Marks, M. J., Collins, A. C. Inbred mouse strains vary in oral self-selection of nicotine. Psychopharmacology (Berl). 124, 332-339 (1996).
  25. Sparks, J. A., Pauly, J. R. Effects of continuous oral nicotine administration on brain nicotinic receptors and responsiveness to nicotine in C57Bl/6 mice. Psychopharmacology (Berl). , 141-145 (1999).
  26. Rahman, S., Zhang, J., Engleman, E. A., Corrigall, W. A. Neuroadaptive changes in the mesoaccumbens dopamine system after chronic nicotine self-administration: a microdialysis study. Neurosciences. 129, 415-4124 (2004).
  27. Picciotto, M. R., Zoli, M., Rimondini, R., Lena, C., Marubio, L. M., Pich, E. M. Acetylcholine receptors containing the β2 subunit are involved in the reinforcing properties of nicotine. Nature. 391, 173-177 (1998).
  28. Fowler, C. D., Lu, Q., Johnson, P. M., Marks, M. J., Kenny, P. J. Habenular α5 nicotinic receptor subunit signalling controls nicotine intake. Nature. 471, 597-601 (2011).
  29. Maskos, U., Molles, B. E., Pons, S., Besson, M., Guiard, B. P., Guilloux, J. P. Nicotine reinforcement and cognition restored by targeted expression of nicotinic receptors. Nature. 436, 103-107 (2005).
  30. Matta, S. G., Balfour, D. J., Benowitz, N. L., Boyd, R. T., Buccafusco, J. J., Caggiula, A. R., Craig, C. R., Collins, A. C., Damaj, M. I., Donny, E. C., Gardiner, P. S., Grady, S. R., Heberlein, U., Leonard, S. S. Guidelines on nicotine dose selection for in vivo research. Psychopharmacology. 190, 269-319 (2007).
  31. Lang, T., Rizzoli, S. O. Membrane protein clusters at nanoscale resolution: more than pretty pictures. Physiology (Bethesda). 25, 116-1124 (2010).

Play Video

Citer Cet Article
Renda, A., Nashmi, R. Spectral Confocal Imaging of Fluorescently tagged Nicotinic Receptors in Knock-in Mice with Chronic Nicotine Administration. J. Vis. Exp. (60), e3516, doi:10.3791/3516 (2012).

View Video