18.14:

Generalized Hooke's Law

JoVE Core
Mechanical Engineering
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Mechanical Engineering
Generalized Hooke’s Law

364 Views

01:22 min

March 07, 2024

The generalized Hooke's Law is a broadened version of Hooke's Law, which extends to all types of stress and in every direction. Consider an isotropic material shaped into a cube subjected to multiaxial loading. In this scenario, normal stresses are exerted along the three coordinate axes. As a result of these stresses, the cubic shape deforms into a rectangular parallelepiped. Despite this deformation, the new shape maintains equal sides, and there is a normal strain in the direction of the coordinate axes. The strain components are deduced from the stress components. This process involves considering the impact of each stress component individually and then integrating these effects.

This method uses the superposition principle, which assumes that each effect is linearly related to its load and the resulting deformations are minor. These conditions hold true for multiaxial loading if the stresses do not exceed the material's proportional limit. Additionally, the stress applied on any given face should not cause significant deformations that could impact stress calculation on other faces. Each stress component induces strain in its respective direction and strains in the other two directions. The strain components corresponding to the multiaxial loading can be derived by amalgamating these individual effects. These derived components represent the generalized Hooke's law.

Equation 1