12.17:

Sex Linked Disorders

JoVE Core
Biologie moléculaire
Un abonnement à JoVE est nécessaire pour voir ce contenu.  Connectez-vous ou commencez votre essai gratuit.
JoVE Core Biologie moléculaire
Sex Linked Disorders

11,794 Views

01:43 min

April 07, 2021

Like autosomes, sex chromosomes contain a variety of genes necessary for normal body function. When a mutation in one of these genes results in biological deficits, the disorder is considered sex-linked.

Y chromosome mutations are called “Y-linked” and only affect males since they alone carry a copy of that chromosome. Mutations to the relatively small Y chromosome can impact male sexual function and secondary sex characteristics. Y-chromosome infertility is a disorder that affects sperm production, caused by deletions to the azoospermia factor (AZF) regions of the Y chromosome. In general, Y-linked disorders are only passed from father to son; however, because affected males typically do not father children without assisted reproductive technologies, Y-chromosome infertility is not typically passed on to offspring.

X-linked disorders can be either dominant or recessive. X-linked dominant disorders are the result of a mutation to the X chromosome that can affect either males or females. However, some disorders, including Fragile X syndrome, affect males more severely than females, likely because males do not have a second, normal copy of the X chromosome. Fragile X syndrome is characterized by a wide range of developmental problems, including learning disabilities. X-linked hypophosphatemia is another X-linked dominant condition that manifests in a vitamin-D-resistant form of Rickets.

For a recessive mutation to cause biological deficits, both copies of a chromosome must be mutated. As a result, females must receive two mutated X chromosomes to display an X-linked disorder. In contrast, males are affected if their single X chromosome carries the mutation. As a result, males are affected more often by X-linked recessive conditions, including color blindness, Duchenne muscular dystrophy, and hemophilia.