This protocol describes a dorsal raphe nucleus (DRN)-lesioned mouse model (>90% survival rate in experimental mice) with stable loss of dorsal raphe serotonergic neurons by stereotaxic injection of 5,7-dihydroxytryptamine into the DRN using an angled approach to prevent injury to the superior sagittal sinus.
Stereotaxic injection has been widely used for direct delivery of compounds or viruses to targeted brain areas in rodents. Direct targeting of serotonergic neurons in the dorsal raphe nucleus (DRN) can cause excessive bleeding and animal death, due to its location below the superior sagittal sinus (SSS). This protocol describes the generation of a DRN serotonergic neuron-lesioned mouse model (>90% survival rate) with stable loss of >70% 5-HT-positive cells in the DRN. The lesion is induced by stereotaxic injection of a selective serotonergic neurotoxin 5,7-dihydroxytryptamine (5,7-DHT) into the DRN using an angled approach (30° in the anterior/posterior direction) to avoid injury to the SSS. DRN serotonergic neuron-lesioned mice display anxiety-associated behavior alterations, which helps to confirm success of the DRN lesion surgery. This method is used here for DRN lesions, but it can also be used for other stereotaxic injections that require angular injections to avoid midline structures. This DRN serotonergic neuron-lesioned mouse model provides a valuable tool for understanding the role of serotonergic neurons in the pathogenesis of psychiatric disorders, such as generalized anxiety disorder and major depressive disorder.
Serotonin, or 5-hydroxytryptamine (5-HT), is an important neurotransmitter mainly produced in the intestines and brain and impacts a variety of psychological functions. In the central nervous system (CNS), the serotonergic system plays a central role in the regulation of mood and social behavior, sleep and waking, appetite, memory, and sexual desire. In the CNS, serotonin is synthesized by serotonergic neurons, which can be separated into the following two groups: the rostral group, which has ascending projections innervating virtually the whole brain; and the caudal group, which mainly projects to the spinal cord1. The rostral group, which contains about 85% of serotonergic neurons in the brain, is composed of the caudal linear nucleus, median raphe nucleus, and DRN, in which the largest population of serotonergic neurons in the brain is located.
Dysregulation of the serotonergic system is generally believed to be linked with the pathogenesis of major depressive disorder (MDD) and generalized anxiety disorders (GAD)2. This is due to the fact that selective serotonin reuptake inhibitors (SSRIs) are effective pharmacological treatment for these psychiatric disorders3,4. In addition, accumulative evidences suggest that mania5 and suicidal behavior6 may be associated with lower levels of serotonin functioning in the DRN. It has also been reported that Pet1-Cre;Lmx1bflox/flox mice and hTM-DTAiPet1 mice (genetic mouse models lacking most central serotonergic neurons from late embryonic stage7 and adulthood8, respectively) display enhanced contextual fear memory. However, despite extensive research, the exact involvement of DRN serotonergic neurons in these psychiatric disorders remains to be elucidated.
In order to explore the mechanisms by which DRN serotonergic neurons regulate the pathogenesis of the serotonin-associated psychiatric disorders, animal models have been generated. Optogenetic tools have been applied to inhibit serotonergic neurons in rat DRN, and these animals display increased anxiety-like behaviors9. However, optogenetics has limitations. For example, a light-delivery device must be implanted into the targeted region deep within the brain, and the surrounding tissue may be injured during implantation surgery or by heat emitted from the light device. Even if temperature alteration may not cause detectable brain tissue damage, it can still induce remarkable physiological and behavioral effects10.
Pharmacological manipulation may be an easier approach to create DRN serotonergic neuron-lesioned animal models. Some groups have generated DRN serotonergic neuron-lesioned rats by stereotaxic microinjection of serotonin neurotoxin 5,7-DHT in the DRN. However, these rat models display different behavioral alterations, such as anxiolytic behavior11, increased anxiety-like behavior12, and impaired object memory13. Despite many studies in rats, fewer studies have been performed on the influences of 5,7-DHT on mice. One group reported excessive mortality (>50%) and limited serotonin depletion in experimental mice that received stereotaxic microinjections of 5,7-DHT in the DRN14. Another group reported that unpredictable chronic mild stress (UCMS) can induce significant attack latency alteration in 5,7-DHT-induced DRN-lesioned mice. However, no histological results were provided to confirm the exact serotonergic neuron loss in the DRN15. Stereotaxic injection in the DRN using standard procedures may lead to massive bleeding and high mortality to mice, given the fact that the anatomical location of DRN is below the SSS16.
This protocol describes the protocol to generate a DRN serotonergic neuron-lesioned mouse model (>90% survival rate of the experimental mice) with stable loss of DRN serotonergic neurons by stereotaxic injection of 5,7-DHT. The injection in DRN uses an angled approach to prevent the injury to the SSS. This surgery consistently causes >70% loss of serotonergic neuron in the DRN of mice, and it produces anxiety-associated behavior alterations. The protocol used here is for inducing DRN lesions, but it can also be useful to researchers who want to perform stereotaxic injections in other midline structures. In addition, this DRN serotonergic neuron-lesioned mouse model provides a valuable tool for understanding the role of serotonergic neurons in psychiatric disorders (i.e., MDD and GAD) and assessing potential neuroprotective agents or therapeutic strategies for these conditions.
All surgical interventions and animal care procedures have been approved by the Animal Committee of School of Life Sciences and Technology, Tongji University, Shanghai, China.
1. Housing of animals
2. Preparation of reagents
NOTE: All drug preparation steps must be performed in a laminar flow hood to avoid contamination. All prepared solutions are stored in a -80 °C freezer. It is recommended to use one aliquot at a time, thaw completely, mix well before use, discard the leftovers in the tube, and avoid repeated freezing and thawing.
3. Preparation of instruments and mice
4. Stereotaxic injection
5. Postoperative care of mice
6. Elevated T-maze test
NOTE: Perform the test as described previously19,20.
7. Perfusion, fixation, immunohistochemical staining, and quantification
8. Statistical analysis
In a coronal section, the location of the DRN is just below the SSS and aqueduct (Figure 1B,C); thus, targeting the DRN using standard procedures can lead to massive bleeding and high mortality in mice16. Therefore, stereotaxic injections were performed here using an angled approach instead of the standard vertical approach to avoid damage to the SSS (Figure 1A,B). To confirm the location of the needle entering the brain, mice that received stereotaxic injections were sacrificed immediately after surgery, and the perfused brains were isolated for histological examination. As shown in Figure 1C, the lesion (the needle track) was localized just to the DRN, below the aqueduct.
It has been reported that inhibitory avoidance in the ETM may be a suitable behavioral task to assess anxiety19. Mice tend to avoid the open arms of an elevated maze and prefer enclosed arms; thus, mice spending less time in enclosed arms demonstrate anxiolytic behavior20. Results from this protocol showed that 5,7-DHT-lesioned mice displayed remarkable lower avoidance latencies than the sham group (Figure 2B, p < 0.05), suggesting that the treatment with 2 μL of 5,7-DHT (3 μg/μL) may have impaired inhibitory avoidance.
Thirty-five days after surgery, the effects of 5,7-DHT on DRN serotonergic neurons were histologically analyzed (Figure 4A,B), and quantification of 5-HT-positive cells in DRN were performed (Figure 4C). Serotonergic neurons were stained positively with anti-5-HT antibody. Remarkable loss of >70% 5-HT-positive cells was observed in the DRN of 5,7-DHT-lesioned mice (Nlesion= 7, cell number = 305 ± 32) compared to the sham group (Nsham= 5, cell number = 1164 ± 95) (Figure 4C), suggesting that stereotaxic injection of 5,7-DHT in the DRN destroyed >70% of serotonergic neurons without inducing animal death, since no animal was found dead until perfusion.
Figure 1: Stereotaxic injection using an angled approach and verification of the target area in the DRN. (A) Mouse placed in the stereotaxic apparatus with the z-axis manipulator arm set to 30°. (B) Schematic illustration of the injection using an angled approach and the formula needed to calculate the target coordinates (SSS = superior sagittal sinus). (C) The remaining needle track in the coronal section of the brain at the level of -4.6 mm from the bregma. (n = 3, scale bar = 1 mm, APa = adjusted AP, DVa = adjusted DV). Please click here to view a larger version of this figure.
Figure 2: Behavioral assessment of 5,7-DHT-lesioned mice. (A) Schematic representation of the experimental procedures measuring inhibitory avoidance in the elevated T-maze (ETM). (B) Effects of 5,7-DHT lesion on inhibitory avoidance latencies as measured by the ETM. (n = 9 per strain, **p < 0.01, two-way ANOVA). Please click here to view a larger version of this figure.
Figure 3: Identification of DRN during sectioning. (A,B,C,D) Brain structures shown in the caudal to rostral direction. (E,F,G,H) Brain sections of the structures shown in (A–D), respectively. (I,J,K,L) H&E staining of the sections shown in (E–H), respectively. Scale bar = 1 mm (LR4V = lateral recess of the fourth ventricle, 4V = fourth ventricle, 2Cb = second cerebellar lobule, Aq = aqueduct). Please click here to view a larger version of this figure.
Figure 4: Loss of serotonergic neurons in the DRN after 5,7-DHT lesion. Immunofluorescence images showing 5-HT-positive cells in the (A) lesion and (B) sham groups at different levels of the entire DRN from the rostral to caudal regions (left to right, 4.0–4.8 mm posterior from the bregma). Scale bar = 100 μm. (B) Quantification of serotonergic neurons in the DRN (values are presented as mean ± SEM, Nlesion = 7, Nsham = 5, **p < 0.01, unpaired t-test). Please click here to view a larger version of this figure.
This protocol successfully describes production of a reliable DRN serotonergic neuron-lesioned mouse model with high lesion reproducibility and low mortality rate. Targeting the DRN is a complex task, since it can damage the SSS located just above the DRN16 and lead to excessive bleeding and even death14. Therefore, stereotaxic injections were performed by setting the manipulation arm at 30° in the AP direction to avoid injury to the SSS (Figure 1A,B). The needle track shown below the aqueduct (Figure 1C) confirms accurate targeting of the DRN. One month after surgery, the DRN serotonergic neuron-lesioned mice display significantly lower latencies in ETM test, indicative of anxiolytic behavior (Figure 2B), with loss of >70% serotonergic neurons in the lesioned DRN (Figure 4).
Although an angled approach while performing stereotaxic injections helps to avoid midline structures, there are still some limitations to this technique. Some factors (i.e., anatomical variability, localization of the bregma and lambda, size of the mice, etc.) may affect the targeting accuracy and lead to unsuccessful damage to DRN serotonergic neurons. Increasing the injection volume of the neurotoxin (5,7-DHT) may help overcome the problem. Indeed, some mice that received 1 μL of 5,7-DHT (3 μg/μL) in a preliminary study showed insufficient DRN serotonergic neurons loss (data not shown), which may have been caused by inaccurate targeting due to variable factors. In contrast, 2 μL of 5,7-DHT (applied in this study) stably induced more than 70% loss of serotonergic neurons in the DRN.
It has been reported that 5,7-DHT is a selective serotonergic neurotoxin23. In the present study, 5,7-DHT-lesioned mice display anxiolytic behavior (Figure 2B). Consistent with these results, Sena et al. found that rats treated with 5,7-DHT in DRN showed impaired inhibitory avoidance indicative of anxiolytic behavior11. Jia et al. also reported that the central 5-HT-deficient (conditional deletion of Tph2 or Lmx1b) mice showed reduced anxiety-like behavior24. However, contradictory results have reported that 5,7-DHT-induced DRN lesion led to increased anxiety or other behavioral alterations in rats. In the same study, intracerebroventricular (i.c.v.) injection of 5,7-DHT led to increased anxiety in rats12. Lieben et al. reported that 5,7-DHT lesions in the DRN of rats impaired object memory instead of anxiety-associated behavior13. Optogenetic inhibition of serotonergic neurons in DRN have also been shown to increase anxiety-like behaviors in rats9.
Despite many studies on rats, few articles reported the influences of 5,7-DHT on mice. Martin et al. reported >50% excessive mortality of experimental mice and limited serotonin depletion (15%) occurring in 5,7-DHT-induced DRN-lesioned mice14. Yalcin et al. reported that UCMS could induce significant attack latency alteration in 5,7-DHT-induced DRN-lesioned mice15. In fact, variances in the route of 5,7-DHT administration, the target of 5,7-DHT delivered to, and the type of animal used for research can all lead to different behavioral alterations13. Different volumes of 5,7-DHT can also lead to behavioral alterations. For example, moderate deletion of serotonergic neurons may lead to increased or normal extracellular serotonin levels because of the compensatory function of remaining neurons12.
Another reason for these contradictory results may be due to the elongated structure of the DRN and its extensive projections. Marcinkiewcz et al. reported that stimulation of mouse BNST-projecting DRN serotonergic neurons is anxiogenic25, while Ohmura et al.26, Nishitani et al.9, and Correia et al.27 showed that activation of DRN serotonergic neurons has no effect on anxiety-associated behavior. DRN serotonergic neurons in different projected areas may encode anxiogenic or anxiolytic signals; thus, manipulation of DRN serotonergic neurons in different projected areas can induce different behavioral alterations. The mechanisms underlying animal behaviors caused by the loss of DRN serotonergic neurons remains enigmatic, and further research is needed.
Despite many DRN lesion studies using rat models have been published, fewer are available that involve mice. This protocol contributes to the field by providing histological and behavioral data from a 5,7-DHT-induced DRN lesion mouse model. Great success in animal survival rates as well as the elimination of serotonergic neurons in the DRN could is achievable using a 30° angle in the A/P direction. It may be helpful to distinguish some of the contradictory results found in the existing literature by using a reliable method for administering 5,7-DHT in the DRN.
Furthermore, this method is used here for DRN lesions, but it may also provide useful data for the researchers who want to perform stereotaxic injections in other midline structures of the brain. Given that this protocol generates a DRN serotonergic neuron-lesioned mouse model that displays decreased anxiety-like behavior, it may be a valuable tool to delineate the role of serotonergic neurons in psychiatric disorders (i.e., MDD and GAD) and assess new therapeutic approach to treat these conditions.
The authors have nothing to disclose.
This work was supported by the National Key Research and Development Program of China [Grant numbers 2017YFA0104100]; the National Natural Science Foundation of China [Grant numbers 31771644, 81801331 and 31930068]; and the Fundamental Research Funds for the Central Universities.
0.22micron syringe filter | Millipore | SLGPRB | |
3% hydrogen peroxide | Caoshanhu Co.,Ltd, Jiangxi, China | ||
5,7-Dihydroxytryptamine | Sigma-Aldrich | SML2058 | 3ug/ul, 2ul |
Compact small animal anesthesia machine | RWD Life Science Co., Ltd | R500 series | |
Cryostat | Leica Biosystems, Wetzlar, Germany | CM1950 | |
Cy 3 AffiniPure Donkey Anti-Goat IgG (H+L) | Jackson ImmunoResearch | 705-165-003 | 1:2,000 |
dapi | Sigma-Aldrich | D8417 | |
desipramine hydrochloride | Sigma-Aldrich | PHR1723 | 25mg/kg |
Eppendorf tube | Quality Scientific Plastics | 509-GRD-Q | |
goat anti-5-HT antibody | Abcam | ab66047 | 1:800 |
GraphPad Prism | Graphpad Software Inc, CA, US | ||
Hamilton Microliter syringe | Hamilton | 87943 | |
Ketoprofen | Sigma-Aldrich | K1751-1G | 5mg/kg |
L-ascorbic acid | BBI Life Sciences | A610021-0500 | 0.10% |
lidocaine ointment | Tsinghua Tongfang Pharmaceutical Co. Ltd | H20063466 | |
ofloxacin eye ointment | Shenyang Xingqi Pharmaceutical Co.Ltd, China | H10940177 | |
peristaltic pump | Huxi Analytical Instrument Factory Co., Ltd, Shanghai, China | HL-1D | |
stereotaxic apparatus | RWD Life Science Co., Ltd | 68018 | |
ultra-low temperature freezer | Haier | DW-86L388 | |
Vortex | Kylin-bell | VORTEX-5 |
.