Summary

包埋法和微波处理制备色泽稳定的抹茶鲜面

Published: July 26, 2024
doi:

Summary

该方案描述了一种将抹茶与乳清蛋白和羧甲基壳聚糖包埋并微波处理小麦粉以获得颜色稳定的抹茶新鲜面条的方法。

Abstract

抹茶作为一种健康的食品添加剂,已广泛应用于面条、饼干和面包等传统食品中。然而,抹茶食品的质量必须解决几个挑战,其中最重要的是防止抹茶变色。在这项研究中,我们介绍了一种新方法,涉及将抹茶与乳清蛋白 (0.08 g/mL) 和羧甲基壳聚糖 (0.04 g/mL) 掺入,同时在 700 W 下微波处理小麦粉 60 秒,以生产颜色稳定的抹茶新鲜面条。文章介绍了抹茶鲜面条生产过程中涉及的所有步骤,包括抹茶包埋处理、小麦粉微波处理、揉面团、发酵、分割面团、擀面团和用压面机将片材切片。研究结果显示,与未处理的新鲜抹茶面相比,包埋和微波处理后新鲜抹茶面的变色减少了 72.13%。此外,组合过程对抹茶面的感官属性(包括其香气和味道)没有任何不利影响。因此,本研究提出的新方法对于增强新鲜抹茶面在制备过程中的颜色稳定性具有重要潜力。

Introduction

面条是中国传统谷物菜肴的主食,亚洲国家约 40% 的小麦产量用于面条加工1。然而,小麦粉的基本营养成分不足以满足消费者日益增长的营养需求。因此,一些研究人员选择用替代天然成分代替面条中的部分小麦粉,例如燕麦麸2、牛奶蛋白3、红薯4 和柑橘大促5,以增强面条的营养和功能品质。抹茶是一种丰富的生物活性化合物,具有抗氧化和抗炎特性,有可能降低患心血管疾病的风险并预防慢性疾病6。因此,人们对研究将抹茶融入传统美食的兴趣日益浓厚,包括中式蒸面包、年糕,尤其是新鲜面条。

然而,鲜面条容易出现随时间而变暗的情况,导致产品的视觉外观发生不利的变化,这对鲜面条的储存构成重大挑战7.人们普遍认为,在新鲜面条的储存过程中观察到的变色主要是由多酚氧化酶 (PPO) 的存在引起的7,8。此外,研究表明可溶性蛋白质组分参与非多酚氧化酶 (non-PPO) 变暗的过程9.近年来,人们投入了大量精力来减轻 PPO 在储存过程中的变黑。先前的研究表明,应用于生面条的酸抑制剂和热处理可以通过使蛋白质变性并因此抑制酶活性来有效实现这一目标10,11。叶绿素容易受到 pH 值、温度和热量变化的影响,绿茶面条充满活力的绿色色调主要归功于叶绿素10。显然,通过直接添加酸抑制剂和热处理来有效控制绿茶面的颜色存在局限性。

除了小麦粉的热加工外,抹茶面条中叶绿素的保存也是一个需要考虑的关键因素。已经提出了几种方法来延长叶绿素的储存时间并保留其色素,包括使用碱化剂、铜络合和低温储存12。不幸的是,大多数过程都需要接近自然的 pH 值,以减少不利化学反应的发生。叶绿素衍生物的铜复合物可能会减轻稳定性问题,叶绿素衍生物表现出让人联想到天然叶绿素的绿色。然而,与人工色素相比,个体表现出对天然叶绿素的偏好。微胶囊化技术已成为解决提高生物活性化合物稳定性挑战的可行解决方案,它通过提供对氧气、pH 值、离子强度和温度等环境条件的屏障 13,14,15。到目前为止,人们一直在研究茶提取物、儿茶素和叶绿素在包埋在不同墙体材料中的稳定性和控释特性14。然而,尚未提出将微胶囊掺入面条中 15

在这项研究中,我们描述了一种将抹茶与乳清蛋白和羧甲基壳聚糖包埋并微波处理小麦粉以获得颜色稳定的抹茶新鲜面条的方法。在食品中添加微胶囊化生物活性化合物有助于创造新型功能性食品,同时保留固有的定性属性。我们展示了使用该加工方案获得的结果,以研究储存后抹茶面颜色值的变化。该研究的具体目标是确定制备具有独特颜色和风味的抹茶面的最佳方法。

Protocol

1. 抹茶包埋悬架的生产 将 4 g 羧甲基壳聚糖(参见 材料表)放入 100 mL 蒸馏水中,制备 0.04 g/mL 羧甲基壳聚糖储备液。将羧甲基壳聚糖溶解,在恒温加热磁力搅拌器上加热至 60°C。 将 4 g 乳清蛋白(参见 材料表)溶于 50 mL 蒸馏水中,制备 0.08 g/mL 乳清蛋白储备液。 溶液冷却后,将它们存放在冰箱中并冷藏过夜以使聚合物分子完全饱和。…

Representative Results

该协议允许对加工抹茶食品和面条进行感官和物理特性分析,从抹茶处理开始,一直到加工的中间阶段到最终产品。该协议与嵌入和微波相结合以生产抹茶面 条(图 3)。将未包埋抹茶、包埋抹茶和微波处理、无抹茶的新鲜面条分别标记为 M-Noodles 、 ME-Noodles 和 control 。在对 3 种面条样品的感官评价方面,观察到微波和添加壁材料对抹茶面的感官属性(包括其香…

Discussion

与方便面、细干面和其他类似产品相比,新鲜面条具有更强的保留其原汁原味和风味的能力,使其在市场上极具前景。之前的一项研究表明,绿茶可以在一定程度上提高新鲜面条的整体品质16。因此,将茶叶加入鲜面的面粉产品系统旨在优先考虑高品质和健康益处,符合当代提倡自然和追求绿色健康饮食的趋势。然而,茶中的多酚和色素等化合物在茶叶鲜面条的周围储存环境中?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项研究得到了 CARS-tea 和中国农业科学院创新项目 (CAAS-ASTIP-TRI) 的支持。

Materials

Carboxymethyl chitosan Mackin
Colorimeter 3nh NH-300+
Dough mixer ACA AM-CG108
Freezer Haier BCD-252KS
Heating magnetic stirrer Yuhua DF-101S
Magnetic stirrer Keezo KMS-521D
Matcha Jinhua Feicui
Microwave Panasonic NN-GF351X
NaCl China National Salt Industry Corporation
Noodle maker Tianxi JCD-10
Texture analyzer Lotun Science TA-XT plus
Wheat flour Queen
Whey protein Yuanye

Referencias

  1. Yu, K., Zhou, H. M., Zhu, K. X., Guo, X. N., Peng, W. Increasing the physicochemical stability of stored green tea noodles: Analysis of the quality and chemical components. Food Chem. 278, 333-341 (2019).
  2. Nguyen, T. T. L., Gilbert, R. G., Gidley, M. J., Fox, G. P. The contribution of β-glucan and starch fine structure to texture of oat-fortified wheat noodles. Food Chem. 372, 131291 (2022).
  3. Baskaran, D., Muthupandian, K., Gnanalakshmi, K. S., Pugazenthi, T. R., Ayyadurai, K. Physical properties of noodles enriched with whey protein concentrate (wpc) and skim milk powder (smp). J Stored Prod Postharvest Res. 2 (6), 127-130 (2011).
  4. Chen, Z., et al. Evaluation of starch noodles made from three typical Chinese sweet-potato starches. J Food Sci. 67 (9), 3342-3347 (2002).
  5. Reshmi, S. K., Sudha, M. L., Shashirekha, M. N. Noodles fortified with citrus maxima (pomelo) fruit segments suiting the diabetic population. Bioactive Carb Dietary Fibre. 22, 100213 (2020).
  6. Phuah, Y. Q., Chang, S. K., Ng, W. J., Lam, M. Q., Ee, K. Y. A review on matcha: Chemical composition, health benefits, with insights on its quality control by applying chemometrics and multi-omics. Food Res Int. 170, 113007 (2023).
  7. Hou, G. G. . Asian noodles: science, technology, and processing. , (2010).
  8. Asenstorfer, R. E., Appelbee, M. J., Mares, D. J. Impact of protein on darkening in yellow alkaline noodles. J Agri Food Chem. 58 (7), 4500-4507 (2010).
  9. Asenstorfer, R. E., Appelbee, M. J., Kusznir, C. A., Mares, D. J. Toward an understanding of mechanisms involved in non-polyphenol oxidase (Non-PPO) darkening in yellow alkaline noodles (YAN). J Agri Food Chem. 62 (20), 4725-4730 (2014).
  10. Zhu, K. X., Dai, X., Guo, X., Peng, W., Zhou, H. M. Retarding effects of organic acids, hydrocolloids and microwave treatment on the discoloration of green tea fresh noodles. LWT – Food Sci Tech. 55 (1), 176-182 (2014).
  11. Yadav, D. N., Patki, P. E., Sharma, G. K., Bawa, A. S. Effect of microwave heating of wheat grains on the browning of dough and quality of chapattis. Int J Food Sci Tech. 43 (7), 1217-1225 (2008).
  12. Ngamwonglumlert, L., Devahastin, S., Chiewchan, N. Natural colorants: Pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Critic Rev Food Sci Nutri. 57 (15), 3243-3259 (2017).
  13. Zhang, Z. H., et al. Preparation and characterization of whey protein isolate-chlorophyll microcapsules by spray drying: Effect of WPI ratios on the physicochemical and antioxidant properties. J Food Eng. 267, 109729 (2020).
  14. Ramdha, T., Ching, S. H., Prakash, S., Bhandari, B. Evaluation of alginate-biopolymers (protein, hydrocolloid, starch) composite microgels prepared by the spray aerosol technique as a carrier for green tea polyphenols. Food Chem. 3371, 1131382 (2022).
  15. Pasrija, D., Ezhilarasi, P. N., Indrani, D., Anandharamakrishnan, C. Microencapsulation of green tea polyphenols and its effect on incorporated bread quality. LWT – Food Sci Tech. 64, 289-296 (2015).
  16. Li, M., et al. Effect of superfine green tea powder on the thermodynamic, rheological and fresh noodle making properties of wheat flour. LWT – Food Sci Techn. 46 (1), 23-28 (2012).
  17. Kun Yu, K., Zhou, H. M., Zhu, K. X., Guo, X. N., Peng, W. Physicochemical changes in the discoloration of dried green tea noodles caused by polyphenol oxidase from wheat flour. LWT – Food Sci Tech. 130, 109614 (2020).
  18. Doxastakis, G., et al. Technological properties and non-enzymatic browning of white lupin protein enriched spaghetti. Food Chemistry. 101 (1), 57-64 (2007).
  19. Xu, F., et al. Effects of heat treatment on polyphenol oxidase activity and textural properties of jackfruit bulb. J Food Process Preserv. 40 (5), 943-949 (2016).
  20. Yadav, D. N., Patki, P. E., Sharma, G. K., Bawa, A. S. Effect of microwave heating of wheat grains on the browning of dough and quality of chapattis. Int J Food Sci Tech. 43 (7), 1217-1225 (2008).
  21. Xue, C. F., Sakai, N., Fukuoka, M. Use of microwave heating to control the degree of starch gelatinization in noodles. J Food Eng. 87, 357-362 (2008).
  22. Thammathongchat, S., Fukuoka, M., Watanabe, H. An innovative noodle: Gelatinized at the core, leaving the surface ungelatinized. J Food Eng. 70 (1), 27-33 (2005).
  23. Özkan, G., Bilek, S. E. Enzyme-assisted extraction of stabilized chlorophyll from spinach. Food Chem. 176, 152-157 (2015).
  24. Jiang, S. J., et al. Characterization of whey protein-carboxymethylated chitosan composite films with and without transglutaminase treatment. Carb Poly. 153, 153-159 (2016).
  25. Ning, J. M., Hou, G., Sun, J. J., Zhang, Z. Z., Wan, X. C. Effects of green tea powder on the quality attributes of hard red winter wheat flour and Chinese steamed bread. Int J Food Sci Tech. 54, 576-582 (2019).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Wang, Y., Zou, C., Yin, J. Preparation of Matcha Fresh Noodles with Stable Color using Embedding Method and Microwave Treatment. J. Vis. Exp. (209), e67074, doi:10.3791/67074 (2024).

View Video