Summary

Imágenes de lámina de luz 4D de la contracción cardíaca del pez cebra

Published: January 05, 2024
doi:

Summary

Este protocolo utiliza imágenes de láminas de luz para investigar la función contráctil cardíaca en larvas de pez cebra y obtener información sobre la mecánica cardíaca a través del seguimiento celular y el análisis interactivo.

Abstract

El pez cebra es un organismo modelo intrigante conocido por su notable capacidad de regeneración cardíaca. El estudio de la contracción del corazón in vivo es esencial para obtener información sobre los cambios estructurales y funcionales en respuesta a las lesiones. Sin embargo, la obtención de imágenes de alta resolución y alta velocidad en 4 dimensiones (4D, 3D espacial + 1D temporal) del corazón del pez cebra para evaluar la arquitectura cardíaca y la contractilidad sigue siendo un desafío. En este contexto, se utiliza un microscopio de lámina de luz (LSM) interno y un análisis computacional personalizado para superar estas limitaciones técnicas. Esta estrategia, que implica la construcción del sistema LSM, la sincronización retrospectiva, el seguimiento de una sola célula y el análisis dirigido por el usuario, permite investigar la microestructura y la función contráctil en todo el corazón a la resolución de una sola célula en las larvas de pez cebra transgénicas Tg (myl7: nucGFP ). Además, somos capaces de incorporar aún más la microinyección de compuestos de moléculas pequeñas para inducir lesiones cardíacas de forma precisa y controlada. En general, este marco permite rastrear los cambios fisiológicos y fisiopatológicos, así como la mecánica regional a nivel de una sola célula durante la morfogénesis y la regeneración cardíacas.

Introduction

El pez cebra (Danio rerio) es un organismo modelo ampliamente utilizado para estudiar el desarrollo, la fisiología y la reparación cardíaca debido a su transparencia óptica, trazabilidad genética y capacidad regenerativa 1,2,3,4. En el caso del infarto de miocardio, si bien los cambios estructurales y funcionales impactan la eyección cardíaca y la hemodinámica, las limitaciones técnicas continúan dificultando la capacidad de investigar el proceso dinámico durante la regeneración cardíaca con la alta resolución espacio-temporal. Por ejemplo, los métodos convencionales de imagen, como la microscopía confocal, tienen limitaciones en cuanto a la profundidad de la imagen, la resolución temporal o la fototoxicidad para capturar los cambios dinámicos y evaluar la función contráctil cardíaca durante múltiples ciclos cardíacos5.

La microscopía de lámina de luz representa un método de imagen de última generación que aborda con éxito estos problemas al barrer rápidamente el láser a través del ventrículo y la aurícula del corazón, logrando imágenes detalladas con una resolución espacio-temporal mejorada y efectos foto-blanqueadores y fototóxicos insignificantes 6,7,8,9,10,11.

Este protocolo introduce una estrategia integral de imágenes que incluye la construcción del sistema LSM, la reconstrucción de imágenes 4D, el seguimiento celular en 3D y el análisis interactivo para capturar y analizar la dinámica de los cardiomiocitos en todo el corazón durante múltiples ciclos cardíacos12. El sistema de imágenes personalizado y la metodología computacional permiten rastrear la microestructura miocárdica y la función contráctil a nivel de una sola célula en larvas transgénicas de pez cebra Tg(myl7:nucGFP). Además, se administraron compuestos de moléculas pequeñas en los embriones mediante microinyecciones para evaluar la lesión cardíaca inducida por fármacos y la posterior regeneración. Esta estrategia holística proporciona un punto de entrada para investigar in vivo las propiedades estructurales, funcionales y mecánicas del miocardio a nivel de una sola célula durante el desarrollo y la regeneración cardíaca.

Protocol

La aprobación de este estudio fue otorgada por el Comité Institucional de Cuidado y Uso de Animales (IACUC) de la Universidad de Texas en Dallas, bajo el número de protocolo #20-07. Para el presente estudio se utilizaron larvas transgénicas de pez cebra Tg(myl7:nucGFP) 12. Toda la adquisición de datos y el post-procesamiento de imágenes se llevaron a cabo utilizando software de código abierto o plataformas con licencias de investigación o educativas. Los recursos están disponible…

Representative Results

El protocolo actual consta de tres pasos principales: preparación y microinyección del pez cebra, obtención de imágenes de lámina de luz y reconstrucción de imágenes 4D, y seguimiento celular e interacción de realidad virtual. Se permitió que los peces cebra adultos se aparearan, se recolectaron los huevos fertilizados y se realizó la microinyección según fuera necesario para los experimentos propuestos (Figura 1). Este paso proporciona un punto de entrada para explorar las aplic…

Discussion

La integración del modelo del pez cebra con métodos de ingeniería tiene un inmenso potencial para la exploración in vivo del infarto de miocardio, las arritmias y los defectos cardíacos congénitos. Aprovechando su transparencia óptica, capacidad regenerativa y similitudes genéticas y fisiológicas con los humanos, los embriones y larvas de pez cebra se han utilizado ampliamente en la investigación 1,2,4. La res…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Expresamos nuestra gratitud a la Dra. Caroline Burns del Boston Children’s Hospital por compartir generosamente el pez cebra transgénico. Agradecemos a la Sra. Elizabeth Ibáñez por su ayuda en la cría del pez cebra en UT Dallas. También agradecemos todos los comentarios constructivos proporcionados por los miembros de la incubadora D en UT Dallas. Este trabajo fue apoyado por NIH R00HL148493 (Y.D.), R01HL162635 (Y.D.) y el programa UT Dallas STARS (Y.D.).

Materials

RESOURCE SOURCE/Reference IDENTIFIER
Animal models
Tg(myl7:nucGFP) transgenic zebrafish Burns Lab in Boston Children's Hospital ZDB-TGCONSTRCT-070117-49
Software and algorithms
MATLAB The MathWorks Inc. R2023a
LabVIEW National Instruments Corporation 2017 SP1
HCImage Live Hamamatsu Photonics 4.6.1.2
Python The Python Software Foundation 3.9.0
Fiji-ImageJ Schneider et al.18 1.54f
3DeeCellTracker Chentao Wen et al.15 v0.5.2
Unity Unity Software Inc. 2020.3.2f1
Amira Thermo Fisher Scientific 2021.2
3D Slicer Andriy Fedorov et al.17 5.2.1
ITK SNAP Paul A Yushkevich et al.16 4
Light-sheet system
Cylindrical lens Thorlabs ACY254-050-A
4X Illumination objective Nikon MRH00045
20X Detection objective Olympus 1-U2M585
sCMOS camera Hamamatsu C13440-20CU
Motorized XYZ stage Thorlabs PT3/M-Z8
Two-axis tilt stage Thorlabs GN2/M
Rotation stepper motor Pololu 1474
Fluorescent beads Spherotech FP-0556-2
473nm DPSS Laser Laserglow R471003GX
532nm DPSS laser Laserglow R531003FX
Microinjector and vacuum pump
Microinjector WPI PV850
Vacuum pump Welch 2522B-01
Pre-Pulled Glass Pipettes WPI TIP10LT
Capillary tip for gel loading Bio-Rad 2239912
Virtual reality hardware
VR headset Meta Quest 2
30mg/L PTU solution
PTU Sigma-Aldrich P7629
1X E3 working solution
1% Agarose
Low-melt agarose Thermo Fisher 16520050
Deionized water
10g/L Tricaine stock solution
Tricaine Syndel SYNC-M-GR-US02
Deionized water
Sodium bicarbonate Sigma-Aldrich S6014
150mg/L Tricaine working solution
10g/L Tricaine stock solution
Deionized water
60X E3 stock solution
Sodium Chloride Lab Animal Resource Center (LARC), The University of Texas at Dallas NaCl
Potassium Chloride KCL
Calcium Chloride Dihydrate CaCL2 x 2H2O
Magnesium Sulfate Heptahydrate MgSO4 x 7H2O
RO Water
1X E3 working solution
60X E3 stock solution Lab Animal Resource Center (LARC), The University of Texas at Dallas
RO Water
1% Methylene Blue (optional)  C16H18ClN3S

Referencias

  1. Power, R. M., Huisken, J. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods. 14 (4), 360-373 (2017).
  2. Liu, J., Stainier, D. Y. R. Zebrafish in the study of early cardiac development. Circ. Res. 110 (6), 870 (2012).
  3. Ding, Y., Bu, H., Xu, X. Modeling inherited cardiomyopathies in adult zebrafish for precision medicine. Front. Physiol. 11, 599244 (2020).
  4. Giardoglou, P., Beis, D. On zebrafish disease models and matters of the heart. Biomedicines. 7 (1), 15 (2019).
  5. Zhang, X., Alexander, R. V., Yuan, J., Ding, Y. Computational analysis of cardiac contractile function. Curr. Cardiol. Rep. 24 (12), 1983-1994 (2022).
  6. Weber, M., Huisken, J. In vivo imaging of cardiac development and function in zebrafish using light sheet microscopy. Swiss Med. Wkly. 145 (51), w14227 (2015).
  7. Vedula, V., et al. A method to quantify mechanobiologic forces during zebrafish cardiac development using 4-D light sheet imaging and computational modeling. PLOS Comput. Biol. 13 (10), e1005828 (2017).
  8. Yalcin, H. C., Amindari, A., Butcher, J. T., Althani, A., Yacoub, M. Heart function and hemodynamic analysis for zebrafish embryos. Dev. Dyn. 246 (11), 868-880 (2017).
  9. Baek, K. I., et al. Advanced microscopy to elucidate cardiovascular injury and regeneration: 4D light-sheet imaging. Prog. Biophys. Mol. Biol. 138, 105-115 (2018).
  10. Salman, H. E., Yalcin, H. C. Advanced blood flow assessment in Zebrafish via experimental digital particle image velocimetry and computational fluid dynamics modeling. Micron. 130, 102801 (2020).
  11. Sodimu, O., et al. Light sheet imaging and interactive analysis of the cardiac structure in neonatal mice. J. Biophotonics. 16 (5), e202200278 (2023).
  12. Zhang, X., et al. 4D light-sheet imaging and interactive analysis of cardiac contractility in zebrafish larvae. APL Bioeng. 7 (2), 026112 (2023).
  13. Westerfield, M. The Zebrafish Book. Eugene. , (2000).
  14. Rosen, J. N., Sweeney, M. F., Mably, J. D. Microinjection of zebrafish embryos to analyze gene function. J Vis Exp. 25, e1115 (2009).
  15. Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B., Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn. 203 (3), 253-310 (1995).
  16. Girkin, J. M., Carvalho, M. T. The light-sheet microscopy revolution. J. Opt. 20 (5), 053002 (2018).
  17. Gualda, E. J., et al. OpenSpinMicroscopy: an open-source integrated microscopy platform. Nat. Methods. 10 (7), 599-600 (2013).
  18. Messerschmidt, V., et al. Light-sheet fluorescence microscopy to capture 4-dimensional images of the effects of modulating shear stress on the developing zebrafish heart. J Vis Exp. 138, e57763 (2018).
  19. Kaufmann, A., Mickoleit, M., Weber, M., Huisken, J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Development. 139 (17), 3242-3247 (2012).
  20. Lee, J., et al. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J Clin Invest. 126 (5), 1679-1690 (2016).
  21. Zhang, X., et al. 4D light-sheet imaging and interactive analysis of cardiac contractility in Zebrafish larvae. Zenodo. , (2023).
  22. Wen, C., et al. 3deecelltracker, a deep learning-based pipeline for segmenting and tracking cells in 3d time lapse images. Elife. 10, e59187 (2021).
  23. Yushkevich, P. A., et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 31 (3), 1116-1128 (2006).
  24. Fedorov, A., et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn. Reson. Imaging. 30 (9), 1323-1341 (2012).
  25. Naderi, A. M., et al. Deep learning-based framework for cardiac function assessment in embryonic zebrafish from heart beating videos. Comput. Biol. Med. 135, 104565 (2021).
  26. Mickoleit, M., et al. High-resolution reconstruction of the beating zebrafish heart. Nat. Methods. 11 (9), 919-922 (2014).
  27. Lee, J., et al. 4-Dimensional light-sheet microscopy to elucidate shear stress modulation of cardiac trabeculation. J. Clin. Invest. 126 (5), 1679-1690 (2016).
  28. Ding, Y., et al. Multiscale light-sheet for rapid imaging of cardiopulmonary system. JCI Insight. 3 (16), e121396 (2018).
  29. Choe, C. P., et al. Transgenic fluorescent zebrafish lines that have revolutionized biomedical research. Lab. Anim. Res. 37 (1), 1-29 (2021).
  30. Coelho-Filho, O. R., et al. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications on early cardiac remodeling. Circulation. 128 (11), 1225 (2013).
  31. Zhang, B., et al. Automatic segmentation and cardiac mechanics analysis of evolving zebrafish using deep learning. Front. Cardiovasc. Med. 8, 675291 (2021).
  32. Ding, Y., et al. Integrating light-sheet imaging with virtual reality to recapitulate developmental cardiac mechanics. JCI Insight. 2 (22), e97180 (2017).
  33. Koger, C. R., Hassan, S. S., Yuan, J., Ding, Y. Virtual reality for interactive medical analysis. Front. Virtual Real. 3, 782854 (2022).
  34. Yuan, J., et al. Extended reality for biomedicine. Nat. Rev. Methods Prim. 3 (1), 1-1 (2023).

Play Video

Citar este artículo
Zhang, X., Saberigarakani, A., Almasian, M., Hassan, S., Nekkanti, M., Ding, Y. 4D Light-sheet Imaging of Zebrafish Cardiac Contraction. J. Vis. Exp. (203), e66263, doi:10.3791/66263 (2024).

View Video