Ex vivo canlı görüntüleme, canlı dokulardaki hücresel hareketlerin ve etkileşimlerin dinamik süreçlerini incelemek için güçlü bir tekniktir. Burada, kültürlenmiş tüm yetişkin fare kesici dişlerinde diş epitel hücrelerini canlı izlemek için iki foton mikroskobu uygulayan bir protokol sunuyoruz.
Sürekli büyüyen fare kesici dişi, yetişkin epitelyal ve mezenkimal kök hücrelerin düzenlenmesini ve diş rejenerasyonunu araştırmak için oldukça izlenebilir bir model sistem olarak ortaya çıkmaktadır. Bu progenitör popülasyonlar, doku homeostazını korumak ve kayıp hücreleri duyarlı bir şekilde yenilemek için aktif olarak bölünür, hareket eder ve farklılaşır. Bununla birlikte, sabit doku kesitlerini kullanan geleneksel analizler, hücresel hareketlerin ve etkileşimlerin dinamik süreçlerini yakalayamadı ve bu da düzenlemelerini inceleme yeteneğimizi sınırladı. Bu makale, bir eksplant kültür sisteminde tüm fare kesici dişlerini korumak ve multifoton timelapse mikroskobu kullanarak canlı diş epitel hücrelerini izlemek için bir protokolü açıklamaktadır. Bu teknik, diş araştırmaları için mevcut araç kutumuza katkıda bulunur ve araştırmacıların canlı bir dokudaki hücre davranışları ve organizasyonları hakkında uzay-zamansal bilgi edinmelerini sağlar. Bu metodolojinin, araştırmacıların hem diş yenilenmesi hem de rejenerasyon sırasında meydana gelen dinamik hücresel süreçleri kontrol eden mekanizmaları daha fazla keşfetmelerine yardımcı olacağını tahmin ediyoruz.
Son yirmi yılda, fare kesici dişi, yetişkin kök hücre regülasyonu ve diş rejenerasyonuilkelerini araştırmak için paha biçilmez bir platform olarak ortaya çıkmıştır 1,2. Fare kesici diş sürekli büyür ve hayvanın yaşamı boyunca kendini yeniler. Bunu, kendi kendini yenileyebilen ve dişin farklı hücre tiplerine farklılaşabilen hem epitelyal hem de mezenkimal kök hücreleri koruyarak yapar 1,2. Dental epitelyal kök hücreler mine matriksini salgılayan ameloblastlara yol açarken, dental mezenkimal kök hücreler sırasıyla dentin, sement ve periodontal ligament oluşturan odontoblastlara, sementoblastlara ve fibroblastlara yol açar 3,4,5,6. Bu sürekli yeni hücre kaynağı, doku homeostazını korur ve çiğneme aşınması veya yaralanmalar nedeniyle kaybedilen eski hücrelerin değiştirilmesine izin verir 7,8. Bu nedenle, dental kök hücrelerin korunmasını ve farklılaşmasını düzenleyen hücresel ve moleküler mekanizmaların aydınlatılması, artan bir ilgi alanı olan dental rejenerasyonu anlamanın merkezinde yer almaktadır.
Anatomik olarak, yetişkin fare kesici dişinin büyük bir kısmı çene kemiği ile kaplıdır. Dişin insizal kenarı açıktayken, kesici dişin apikal ucu bir yuvaya oturur ve periodontal ligamentler ve bağ dokuları aracılığıyla çevre kemiğe sıkıca tutunur (Şekil 1A,B). Kesici dişin apikal ucu aynı zamanda dişin büyüme bölgesidir ve hem epitel tabakasında hem de mezenkimal pulpada diş sapı ve progenitör hücreleri korur 9,10,11,12,13. Spesifik olarak, diş epitelyal kök hücreleri, apikal tomurcuk olarak bilinen ve labial servikal döngü olarak da adlandırılan epitelin soğanlı ucunda tutulur (Şekil 1C). Bağırsak epiteli ve epidermise benzer şekilde, kesici dişteki epitelyal yenilenme, öncelikle aktif olarak döngüsel kök hücreler ve bunların transit-amplifikasyon hücreleri 14,15,16,17 olarak adlandırılan, her ikisi de servikal döngünün iç kısmında bulunan yüksek oranda proliferatif ara torunları tarafından desteklenir. Bununla birlikte, kesici epitelin rejenerasyon sırasında hareketsiz kök hücreler içerip içermediği ve kullanıp kullanmadığı henüz belirlenmemiştir. Buna karşılık, apikal pulpada hem aktif hem de hareketsiz dental mezenkimal kök hücreler tanımlanmıştır ve hareketsiz kök hücreler, yaralanma onarımı sırasında aktive olan bir yedek popülasyon olarak işlev görür13,18.
Fare kesici dişlerin yenilenmesi ve yenilenmesinin biyolojisi üzerine yapılan keşiflerin çoğu, örneklerin farklı zamansal kavşaklarda elde edildiği, sabitlendiği, işlendiği ve daha sonra belirli bir düzlem boyunca mikron inceliğinde dilimler halinde bölümlere ayrıldığı histolojik araştırmalardan kaynaklanmıştır. Bilim adamları, soy takibini veya genetik bozulmaları mümkün kılan farklı fare modellerinden alınan histolojik kesitlerin ayrıntılı analizi yoluyla, farklı progenitör popülasyonların hücre soylarının yanı sıra kesici diş homeostazını ve yaralanma onarımını kontrol eden genetik ve sinyal yollarını tanımladılar 19,20,21. Bununla birlikte, bölümlerdeki hayati olmayan hücrelerin statik iki boyutlu (2B) görüntüleri, hücre şekli değişiklikleri, hareketleri ve hücresel kinetik gibi canlı dokudaki hücresel davranışların ve uzamsal organizasyonların tam spektrumunu yakalayamaz. Doku kesiti ile çözülemeyen bir zaman ölçeğinde meydana gelen bu hızlı hücresel değişiklikleri tespit etmek ve ölçmek farklı bir strateji gerektirir. Ayrıca, bu tür bilgileri edinmek, diş hücrelerinin birbirleriyle nasıl etkileşime girdiğini, farklı sinyal uyaranlarına nasıl tepki verdiğini ve doku yapılarını ve işlevlerini korumak için kendi kendini nasıl organize ettiğini anlamak için de kritik öneme sahiptir.
Üç uzamsal boyutu zamansal çözünürlükle bütünleştiren bir teknoloji olan iki foton mikroskobu22 kullanılarak dört boyutlu (4D) derin doku görüntülemenin ortaya çıkışı, kültürlenmiş doku eksplantlarının, organoidlerin ve hatta dokuların yerinde uzay-zamansal incelemesini sağlayarak histolojik analizin doğal sınırlamalarının üstesinden gelir 23,24,25,26 . Örneğin, gelişmekte olan diş epitelinin 4 boyutlu canlı görüntülemesi, doku büyümesini, sinyal merkezi oluşumunu ve diş epitel morfogenezini koordine eden hücre bölünmelerinin ve göçlerinin uzay-zamansal modellerini ortaya çıkarmıştır 27,28,29,30,31,32. Yetişkin fare kesici dişinde, 4D görüntüleme son zamanlarda diş epitel yaralanması onarımı sırasında hücresel davranışları incelemek için uyarlanmıştır. Canlı görüntüleme, suprabazal tabakadaki stratum intermedium hücrelerinin, hasarlı epiteli yeniden oluşturmak için bazal tabakada doğrudan ameloblastlara dönüştürülebileceğini ortaya koydu ve geleneksel epitel hasarı onarımı paradigmasınameydan okudu 15.
Burada, labial servikal döngüdeki epitel hücrelerine odaklanarak yetişkin fare kesici dişinin diseksiyonunu, kültürlenmesini ve görüntülenmesini açıklıyoruz (Şekil 1). Bu teknik, diş hücresi canlılığını 12 saatten fazla korur ve floresan etiketli hücrelerin tek hücre çözünürlüğünde canlı olarak izlenmesine izin verir. Bu yaklaşım, hücre hareketi ve göçünün yanı sıra normal kültür koşulları altında veya genetik, fiziksel ve kimyasal bozulmalara yanıt olarak hücre şekli ve bölünme oryantasyonundaki dinamik değişikliklerin araştırılmasına izin verir.
Canlı doku görüntüleme, hücrelerin niş ortamlarında tutulduklarında dinamik süreçlerini ve davranışlarını incelememizi sağlayan önemli bir tekniktir41. İdeal olarak, canlı görüntüleme yüksek uzay-zamansal çözünürlükle in vivo olarak gerçekleştirilir. Bununla birlikte, memeli organları için in vivo görüntüleme, doku erişilemezliği, optik opaklık ve hayvanı veya organı uzun süre hareketsiz hale getirme zorluğu nedeniyle zor olabilir<sup clas…
The authors have nothing to disclose.
UCLA Gelişmiş Işık Mikroskobu/Spektroskopi Laboratuvarı’na ve California NanoSystems Enstitüsü’ndeki (RRID:SCR_022789) Leica Microsystems Mükemmeliyet Merkezi’ne iki foton mikroskobu sağladıkları için teşekkür ederiz. AS, İsrail Bilim Vakfı’ndan ISF 604-21 tarafından desteklenmiştir. JH, NIH/NIDCR’den R03DE030205 ve R01DE030471 tarafından desteklendi. AS ve JH, Amerika Birleşik Devletleri-İsrail İki Uluslu Bilim Vakfı’ndan (BSF) hibe 2021007 de desteklendi.
24 well, flat bottom tissue culture plate | Olympus plastics | 25-107 | |
25x HC IRAPO motCORR water dipping objective | Leica | 11507704 | |
Ascorbic acid (Vitamin C) | Acros Organics | 352685000 | |
D-(+)-Glucose bioxtra | Sigma Aldrich | G7528 | |
Delta T system | Bioptechs | 0420-4 | Including temperature control, culture dishes, and perfusion setup |
Dissection microscope- LEICA S9E | Leica | LED300 SLI | |
DMEM/F12 | Thermo Scientific | 11039047 | Basal media without phenol red |
Feather surgical blade (#15) | Feather | 72044-15 | |
Fine forceps | F.S.T | 11252-23 | |
Glutamax | Thermo Scientific | 35050-061 | Glutamine substitute |
Leica SP8-DIVE equipped with a 25X HC IRAPO motCORR water dipping objective | Leica | n/a | |
low-melting agarose | NuSieve | 50080 | |
non-essential amino acids (100x) | Thermo Scientific | 11140-050 | |
penicillin–streptomycin | Thermo Scientific | 15140122 | 10,000 U/mL |
Petri dish | Gen Clone | 32-107G | 90 mm |
Rat serum | Valley Biomedical | AS3061SC | Processed for live imaging |
Razor blade #9 | VWR | 55411-050 | |
Scalpel handle | F.S.T | 10003-12 | |
Scissors | F.S.T | 37133 | |
serrated forceps | F.S.T | 11000-13 | |
spring scissors | F.S.T | 91500-09 |