エンテロイドは、組織生理学や病態生理学、医薬品開発、再生医療を研究するための新しいモデルとして浮上しています。ここでは、関連する組織細胞タイプとの共培養を可能にするウシ初代細胞2Dエンテロイド由来培養システムについて説明します。このモデルは、消化器研究のモデリングにトランスレーショナルな利点をもたらします。
オルガノイド細胞培養システムは、組織で観察される複雑さを再現できるため、宿主と病原体の相互作用の研究、薬効と毒性の評価、および組織のバイオエンジニアリングに役立ちます。ただし、これらのモデルの 3 次元 (3D) 特性のために、説明された理由でこれらのモデルを適用することは制限される場合があります。例えば、消化器疾患の研究に3D腸内膜培養システムを使用することは、腸管腔とその分泌物質にアクセスできないため、困難です。実際、病原体による3Dオルガノイドの刺激には、管腔マイクロインジェクション、3D構造の機械的破壊、または頂端アウトエンテロイドの生成のいずれかが必要です。さらに、これらのオルガノイドは免疫細胞や間質細胞と共培養することができないため、病態生理学的動態に関する詳細な機構解析は限られています。これを回避するために、ウシ初代細胞の2次元(2D)エンテロイド由来単層培養システムを最適化し、他の関連する細胞タイプとの共培養を可能にしました。健康な成牛から分離された回腸陰窩を培養して3Dオルガノイドを生成し、将来の使用のために凍結保存しました。蘇生した3Dエンテロイドを継代して破壊し、単一細胞を作製し、基底膜抽出物でコーティングしたトランズウェル細胞培養インサートに播種し、それによって頂端表面を露出させました。腸管単層極性、細胞分化、およびバリア機能は、免疫蛍光顕微鏡法および経上皮電気抵抗の測定を用いて特徴付けた。単分子膜の頂端表面を刺激すると、頂端区画と基底区画の両方からのサイトカイン分泌によって実証されたように、単分子膜の期待される機能が明らかになりました。今回紹介した2次元エンテロイド由来単層モデルは、宿主と病原体の相互作用や腸管生理学、創薬、再生医療の研究に大きな期待が寄せられています。
研究における動物モデルは、疾患の病態生理学と感染中の宿主免疫応答の動態の理解を深める上で重要な役割を果たし、新しい予防および治療戦略の開発をサポートします1,2,3,4。これらのモデルは、動物の研究の発見と進歩を支え、人間の健康研究の進歩の鍵となります。何十年にもわたって、げっ歯類モデルは、ヒト疾患の免疫メカニズムと基礎生物学研究の進歩を支えてきました3,5,6,7。げっ歯類モデルはスクリーニングと初期開発研究において重要ですが、大型動物モデルは、治療効果と安全性試験を含む、早期発見と後期開発研究の両方でヒトの疾患を研究する上でより適切な比較を提供します1,3,4,5。家畜はげっ歯類モデルと比較して、クリプトスポリジウム症、サルモネラ症、結核、呼吸器合胞体ウイルス、ブルセラ症などの一部の疾患のヒト応用において、より効率的な翻訳を行うという明確な利点があります1,7,8。実際、これらの病気やその他の病気は、ヒトといくつかの類似した病気の病因と免疫プロセスを共有する牛で自然に発症し、近親交配集団として、牛は人間の免疫応答に影響を与える遺伝的および環境的不均一性を模倣します5,8,9,10.感染症研究におけるウシモデルの利点は、まず高度な培養システムを採用し、次にin vivo研究を段階的に実施することで最大限に活用できます。非常に複雑なウシ由来の培養システムを最初に使用することで、トランスレーショナル研究や応用研究の成功の可能性を高めながら、生きた動物実験の数を大幅に減らすことができます。培養モデルは、最適な予測妥当性を得るために臓器レベルで疾患プロセスを再現し、天然組織の微小環境を空間的および機能的に保持する必要があります。
粘膜免疫応答は、消化管腸細胞と粘膜表面下に位置する免疫細胞の多様な集団によって形成される高効率のバリアで構成される多面的なシステムである11。この非常に複雑なシステムは、感染時に消化管の恒常性を維持し、腸内病原体に対する免疫防御を開始する上で重要です11。腸細胞と根底にある自然免疫細胞との間のコミュニケーションは、病原性微生物に対する防御免疫応答の発達を開始します。そのため、宿主と腸内病原体の相互作用を最適に調査するためには、複雑さのレベルが比較的高い培養システムが必要であり、腸内生理学と創薬および開発を理解する上で非常に効果的です12,13。オルガノイドは、起源組織の構造と機能に似た堅牢な培養システムです14,15。これらのモデルの多細胞性は、多様な細胞集団の役割と、腸管の健康と疾患に関与する細胞相互作用の研究を可能にします12,14。しかし、ヒト由来のオルガノイドモデルは、ヒト腸上皮細胞の十分な量と一貫した品質を得ることが困難であり、培養における細胞生存率が限られているため、現在のところ限界があります。不死化細胞株は、これらのモデルで相同培養を一貫して高収量にするために使用できます。しかし、形質転換細胞は本質的に、形質転換されていない上皮細胞の多様性と機能的複雑さを欠いています16,17。消化器疾患や生理学を調査するためのモデルとしてウシ組織由来の培養物を使用する利点には、健康なドナーから組織サンプルを一貫して入手することが容易であること、細胞生存率の向上、および不死化されていない組織でのみ達成可能な細胞の多様性の向上が含まれます。腸管オルガノイドの比較組織トランスクリプトミクスと特性評価により、ヒトとウシの間で保存されたオルソロゴス遺伝子と細胞電位の類似性が明らかになりました18。したがって、ウシオルガノイド由来の培養系は、ヒトの腸疾患の調査に有利であり、その結果はヒトの医学に容易に変換できる可能性があります。
本明細書に記載のプロトコルは、ウシ腸内細菌由来の2D初代細胞培養システムを用いて、腸内病原体または化合物および腸生理学に対する宿主の応答を評価するための効果的なプラットフォームを詳述する。3Dオルガノイドとは異なり、トランズウェルインサートで生成された2D培養システムは、腸細胞と免疫細胞または間質細胞の二重培養を可能にし、組織レベルのダイナミクスの研究を可能にします。生物医学研究、医薬品開発、有効性試験への応用により、この生理学的に適切なモデルは、牛と人間の健康と進歩の両方に利益をもたらすことができます。
ここで紹介するプロトコルは、腸の生理学と腸疾患を調査するための生理学的に関連するモデルを説明しています。いくつかの研究グループは、2D単層16、19、20、21、22、23、24を含むウシエントロイド培養の生成について報告しています。単層の生成は技術的にそれほど難しいものではありませんが、成功する培養を一貫して発展させるためには、数分のステップが重要です。そのため、公表された文献で簡潔に説明されている方法を用いた2D単分子膜の再現性は、オルガノイド分野の初心者の研究者にとって困難な場合があります。本明細書に記載のプロトコールは、これらのプロトコールおよび他の種で公表されたプロトコールから採用されたものであり、再現性の高いトランズウェルインサート上の単分子膜生成のステップバイステップガイドを提供する。
本明細書で概説するプロトコールは、実験デザインまたは試薬の入手可能性の特定の目標に適合するように容易に変更することができる。実際、このプロトコルに従えば、他の出版物24に記載されているように、より低い細胞密度(例えば、2.5 x 104)で、またはFBSの非存在下で単層を播種することによって、成功した培養を達成することができる。ただし、これらのパラメータを変更すると、コンフルエント単分子膜を確立するために培養を増やす必要がある場合があります。そのため、免疫細胞との共培養など、研究デザインに不可欠な他の要因によって実験の特定の時間経過が決まる場合は、必要に応じて播種密度を変更することができます。3Dエンテロイドおよび2D単層を生成するためにこのプロトコルで使用されているものの代わりに、他の基底膜製剤を代用することができますが、これらには、最適な基底膜と媒体の比率を決定するためにいくつかの最適化が必要です。
上記の方法論におけるトランズウェルインサートの適用は、従来のプラスチック製品や3Dエンテロイド培養での単層成長よりも多くの利点があります。標準的な組織培養プレートと比較して、単層培養にトランズウェルを使用すると、腸陰窩に似た方法で細胞の分化と組織化が促進されます14,25。腸管上皮バリアは、毒素や微生物の体内への移動を防ぐと同時に、栄養素の吸収を促進するために不可欠です。そのため、腸のバリア完全性が健康な状態でどのように機能し、腸の障害中または化合物に反応して変化するかを理解することが重要です。3Dエンテロイド培養とは異なり、本明細書14,25で実証されているように、トランズウェル上の単層を結合し、TEERを測定すると、腸管バリアの完全性の客観的な評価が可能です。トランズウェル上に2D単分子膜を生成することで、免疫細胞や間質細胞などの適切な細胞タイプとの二重培養も可能になります。これにより、腸管細胞と組織微小環境の細胞との間の非常に重要なクロストークを特徴付けることができますが、これは3D培養では達成できません。単分子膜の頂端表面の曝露は、病原体や化合物への実験的曝露や管腔生成物の収集を可能にするだけでなく、腸内細菌叢や分子吸収または輸送生理学の調査など、腸の生理学や疾患の他の側面の研究も可能にします13。頂端と基底の腸表面を独立して制御できることは、3D腸内モデルに対する明確な利点です。
いくつかの試行錯誤を通じて、プロトコルの成功に貢献した重要なステップを特定しました。全腸組織サンプルは一晩冷蔵して翌日処理することができますが、組織解離と陰窩断片の分離ステップは、単離された陰窩画分の崩壊を防ぐために迅速に実行する必要があります。PBS洗浄が完了したら、洗浄培地でクリプトを遠心分離することで、ステップ2.3.10で詳述されているように、クリプトの故障を防ぐことができます。エンテロイドを継代したり、単層形成のために採取したりする場合は、エンテロイドをBMEドームから分離することが不可欠です。洗浄培地は、BMEの溶解を助けるために氷のように冷たくなければなりません。対照的に、予め温めたTrypLEを使用し、細胞懸濁液を2回ろ過することで、単層生成に必要な単一細胞を形成することができます。最後に、プレートを8の形に手動で操作すると、トランズウェルインサート上に単一セルを均一に分散させることができます。
このプロトコルの重要な制限は、2D単層が成熟したホルスタイン去勢牛(>2歳)から生成された腸内ストックから製造されたことです。子牛の成熟した消化管は、最適な結果を得るために、説明されているプロトコルにわずかな変更を必要とする場合があります。.牛の品種の腸生理機能における品種固有の違いは、文献26に記載されている。これらの違いがエンテロイドとその後の単層生成に影響を与えるかどうかは不明ですが、どのような違いがあったとしても、プロトコルにわずかな変更しかもたらさないと思われます。さらに、2D 培養モデルには固有の欠点がいくつかあります。3Dエンテロイドモデルと比較して、2D培養は腸組織構造と細胞の多様性のいくつかの側面を欠いている可能性があり、2D培養の伝播に関連する制限と課題を生み出す可能性があります13。それでも、研究は、いくつかの単層が予想される陰窩組織を模倣できることを示しており27、これらの制限のいくつかは、気液界面を持つ2D培養を確立することによって克服される可能性さえあります。それにもかかわらず、このモデルの限界を十分に考慮して、その適用が尋ねられている実験的問題に適しているかどうかを判断する必要があります。
このプロトコルはtranswellの挿入物の単層を形作るために牛のような回腸から得られるenteroidsを使用して牛のような胃腸管を模倣する最大限に活用された培養システムを記述する。このハイスループット培養システムは、感染症研究から創薬、再生医療まで幅広い用途があり、動物と人間の健康に相互に有益な予防・治療戦略の前例のない開発につながる可能性があります。
The authors have nothing to disclose.
私たちは、ミッドウェスタン大学の細胞分子コア施設の使用を認めます。
0.2 mL pipette tip | MidSci | PR-200RK-S | |
1 µm PET 24-well cell culture inserts | Corning | 353104 | |
1000 mL pipette tip | MidSci | PR-1250RK-S | |
22 G needle | Becton, Dickinson and Company | 305156 | |
24-well culture vessel | Corning | 353504 | |
40 μm cell strainer | Corning | 431750 | |
50 mL centrifuge tube | Fisher scientific | 14-955-240 | |
5-mL pipet tip | Fisher scientific | 30075307 | |
5 mL syringe | Becton, Dickinson and Company | 309647 | |
5 mL tube | Eppendorf | 30119401 | |
Anti-Cytokeratin -18 (C-04) | Abcam | AB668-1001 | |
B-27 supplement without vitamin A | Gibco | 12-587-010 | |
Belysa software | Luminex | 40-122 | Immunoassay curve fitting software |
Bovine serum albumin (BSA) | Fisher bioreagents | BP9704-100 | |
Caspofungin acetate | Selleckchem | S3073 | |
Cell lifter | Fisher Scientific | 08-100-241 | |
Chromogranin-A (E-5) | Santa Cruz Biotechnology | SC-271738 | |
Coverslips | Fisher scientific | 12-540-C | |
Cryovials | Neptune scientific | 3471.X | |
Cultrex Ultimatrix RGF BME | R&D Systems | BME001-05 | |
DAPI | MilliporeSigma | D9542-5MG | |
Dissecting scissors | VWR | 82027-588 | |
Dithiothreitol (DTT) solution | Thermo Scientific | FERR0861 | |
DMEM/ F-12 1.1 medium (with L-glutamine, without HEPES) | Cytiva | SH30271.01 | |
E-cadherin | Cell Signaling Technology | #3195 | |
Ethylenediaminetetraacetic acid | Fisher Scientific | BP2482500 | |
FBS | Corning | MT35070CV | |
Gentamicin | Gibco | 15710064 | |
Glass microscope slide | Fisher scientific | 12-550-07 | |
Goat anti-mouse Alexa Fluor 488 | Invitrogen | A11001 | |
Goat anti-mouse Alexa Fluor 647 | Invitrogen | A21235 | |
Goat anti-rabbit Alexa Fluor 555 | Invitrogen | A21428 | |
Hemacytometer | Bio-Rad | 1450015 | |
IntestiCult organoid Differentiation medium (Human) | StemCell Technologies | 100-0214 | |
IntestiCult organoid growth medium (Human) | StemCell Technologies | 0-6010 | |
Keyence BZ-X700 | Keyence | BZ-X700 | |
LY2157299 (Galunisertib) | Selleckchem | S2230 | |
MAGPIX system | Luminex | Magpix system | Compact multiplexing unit |
Microscope | Keyence | BZ-X700 | |
MILLIPLEX Bovine Cytokine/Chemokine Magnetic Bead Panel | MilliporeSigma | BCYT1-33K | Bead-based multiplex assay |
Mr. Frosty container | Nalgene | 5100-0001 | |
Non-Enzymatic Cell Dissociation Solution | ATCC | 30-2103 | |
NutriFreeze D10 Cryopreservation Media | Biological Industries | 05-713-1B | |
Orbital shaking platform | Thermo Fisher | 88880021 | |
Pam3Csk4 | invivogen | tlrl-pms | |
Parafilm sealing film | dot scientific inc. | #HS234526C | |
Paraformaldehyde 16% solution | Electron Microscopy Sciences | 15710 | |
Phalloidin-FITC | R&D Systems | 5782/12U | |
Phosphate buffered saline | Fisher Scientific | BP399-20 | |
Prolong Glass Antifade | Invitrogen | P36982 | |
Rabbit anti-human Lyzozyme (EC3.2.1.17) | Agilent technologies | A009902-2 | |
SB202190 (FHPI) | Selleckchem | S1077 | |
Shaking water bath | Thermo Fisher | MaxQ 7000 | |
Sodium Azide | VWR | BDH7465-2 | |
Streptomycin | Teknova | S6525 | |
Trypan Blue dye | Gibco | 15250-061 | |
TrypLE express enzyme | Life technologies | 12604013 | |
Tween 20 | Fisher Scientific | BP337 | |
Voltohmmeter | MilliporeSigma | Millicell ERS-2 | |
Y-27632 | Selleckchem | S1049 |