Deze studie beschrijft een snelle en effectieve methode voor de analyse van celcomponenten van cerebrale bloedstolsels door middel van stolseloplossing, celkleuring en routinematig bloedonderzoek.
Cerebrale trombose, een bloedstolsel in een hersenslagader of ader, is het meest voorkomende type herseninfarct. De studie van de celcomponenten van cerebrale bloedstolsels is belangrijk voor diagnose, behandeling en prognose. De huidige benaderingen voor het bestuderen van de celcomponenten van de stolsels zijn echter voornamelijk gebaseerd op in situ kleuring, die ongeschikt is voor de uitgebreide studie van de celcomponenten omdat cellen strak in de stolsels zijn gewikkeld. Eerdere studies hebben met succes een fibrinolytisch enzym (sFE) geïsoleerd uit Sipunculus nudus, dat het verknoopte fibrine direct kan afbreken, waardoor de celcomponenten vrijkomen. Deze studie heeft een uitgebreide methode vastgesteld op basis van de sFE om de celcomponenten van cerebrale trombus te bestuderen. Dit protocol omvat het oplossen van stolsels, het vrijgeven van cellen, celkleuring en routinematig bloedonderzoek. Volgens deze methode konden de celcomponenten kwantitatief en kwalitatief worden bestudeerd. De representatieve resultaten van experimenten met deze methode worden getoond.
Cerebrovasculaire ziekte is een van de drie belangrijkste ziekten die de menselijke gezondheid kunnen bedreigen, waaronder ischemische cerebrovasculaire ziekte meer dan 80%. Cerebrale trombose en cerebrale veneuze trombose zijn tegenwoordig de meest bezorgde ischemische cerebrovasculaire aandoeningen, voornamelijk veroorzaakt door cerebrale bloedstolsels 1,2. Als de behandeling niet goed wordt uitgevoerd, zal deze hoge invaliditeits- en sterftecijfers hebben en een hoog recidiefpercentage na ontslag3.
Onlangs heeft een groeiend aantal onderzoeken aangetoond dat de celcomponenten van cerebrale bloedstolsels nauw gecorreleerd zijn met de diagnose, behandeling en prognose van cerebrale trombose 4,5,6. Daarom is de beschikbaarheid van gegevens over de samenstelling van de trombus, met name de celcomponenten, belangrijk voor klinische diagnose en behandeling. Helaas kunnen de momenteel beschikbare methoden de bloedstolselcomponent niet kwantitatief en kwalitatief volledig analyseren. Op Martius Scarlett Blue gebaseerde in-situ kleuring kan bijvoorbeeld alleen de rood/witte bloedcellen van bepaalde plakjes van het stolsel7 bestuderen. Op immunohistochemie (IHC) gebaseerde in-situ kleuring kan slechts beperkte bloedcomponenten van bepaalde plakjes van het stolsel bestuderen met behulp van hun antilichamen8. De microscopische beeldgebaseerde methoden houden zich alleen bezig met de specifieke structuur van het stolsel9. Bovendien zijn al die methoden arbeidsintensief en tijdrovend10. Tot op heden zijn de procedures voor het kwantitatief en kwalitatief bestuderen van cerebrale trombicelcomponenten niet gerapporteerd. Het wordt algemeen erkend dat het verknoopte fibrine de bloedcellen stevig omhult in de stolsels11. Bijgevolg is de specifieke afbraak van het verknoopte fibrine en het vrijkomen van de intacte cellen van cruciaal belang voor de nauwkeurige analyse van celcomponenten.
Eerdere werken isoleerden een fibrinolytisch enzym uit Sipunculus nudus (sFE), dat het fibrine specifiek en snel kanafbreken12. Hierin werd een methode voorgesteld voor het analyseren van de celcomponenten van de cerebrale trombi op basis van de unieke activiteit van sFE. Dit protocol maakte gebruik van sFE om eerst het fibrine van stolsels af te breken en analyseerde vervolgens de celcomponenten door middel van Wright’s kleuring en routinematig bloedonderzoek13,14. Volgens deze methode kunnen de celcomponenten van cerebrale trombi kwantitatief en kwalitatief worden bestudeerd. Dit eenvoudige en effectieve protocol kan worden toegepast voor de analyse van celcomponenten van andere bloedstolsels.
sFE is een fibrinolytisch middel dat het fibrine direct en effectief kan afbreken12,16. Hier werd sFE gebruikt om het verknoopte fibrine van de cerebrale bloedstolsels af te breken, de ingesloten cellen in de stolsels vrij te maken en de celcomponenten van de stolsels kwalitatief en kwantitatief te analyseren. De microscopiegegevens en routinematig bloedonderzoek gaven aan dat de ingesloten cellen uit de bloedstolsels waren vrijgekomen. Bovendien werden de celtyp…
The authors have nothing to disclose.
Dit onderzoek werd gefinancierd door het Science and Technology Bureau van de stad Xiamen (3502Z20227197) en het Science and Technology Bureau van de provincie Fujian (nr. 2019J01070, nr. 2021Y0027).
Agglutination Reaction Plate | ROTEST | RTB-4003 | |
Auto Hematology Analyzer | SYSMEX | XNB2 | |
Automatic Vertical Pressure Steam Sterilizer | SANYO | MLS-3750 | |
Centrifuge Tube (1.5 mL) | Biosharp | BS-15-M | |
Clean bench | AIRTECH | BLB-1600 | |
Constant Temperature Incubator | JINGHONG | JHS-400 | |
Culture Dish (100 mm) | NEST | 704001 | |
DHG Series Heating and Drying Oven | SENXIN | DGG-9140AD | |
Electronic Analytical Balance | DENVER | TP-213 | |
Filter Membrane (0.22 µm) | Millex GP | SLGP033NK | |
Micro Refrigerated Centrifuge | Cence | H1650-W | |
Microscope Slides | CITOGLAS | 01-30253-50 | |
Milli-Q Reference | Millipore | Z00QSV0CN | |
Normal Saline | CISEN | H37022337 | |
Optical Microscope | Nikon | ECLIPSE E100 | |
Parafilm | Bemis | PM-996 | |
Phosphate-Buffered Saline | Beyotime | C0221A | |
Pipette Tip (1 mL ) | Axygene | T-1000XT-C | |
Pipette Tip (200 µL) | Axygene | T-200XT-C | |
Pipettor (1 mL) | Thermo Fisher Scientific | ZY18723 | |
Pipettor (200 µL) | Thermo Fisher Scientific | ZY20280 | |
Scalpel | MARTOR | 23111 | |
Small-sized Vortex Oscillator | Kylin-Bell | VORTEX KB3 | |
Tweezer | Hystic | HKQS-180 | |
Wright Staining Solution | Beyotime | C0135-500ml |