Summary

人体骨骼肌的纤维类型鉴定

Published: September 22, 2023
doi:

Summary

该方案演示了使用斑点印迹技术从冻干的人骨骼肌中分离单纤维和根据肌球蛋白重链(MHC)亚型的纤维类型分类。然后,可以使用蛋白质印迹法进一步分析已鉴定的 MHC I 和 II 纤维样品,以了解蛋白质表达的纤维类型特异性差异。

Abstract

此处描述的技术可用于使用斑点印迹法鉴定单个肌肉纤维片段中的特定肌球蛋白重链 (MHC) 亚型,以下称为 Myosin 重链检测,通过 Dot Blotting 进行肌纤维类型 鉴定(MyDoBID)。该协议描述了冷冻干燥人体骨骼肌和分离单肌纤维片段的过程。使用 MyDoBID,I 型和 II 型纤维分别用 MHCI 和 IIa 特异性抗体进行分类。然后将分类的纤维组合成纤维类型特异性样本,用于每次活检。

每个样品中的总蛋白通过十二烷基硫酸钠聚丙烯酰胺凝胶电泳 (SDS-PAGE) 和紫外线活化凝胶技术测定。使用蛋白质印迹法验证样品的纤维类型。此外,还描述了进行蛋白上样归一化以增强跨多个蛋白质印迹的靶蛋白检测的重要性。与单纤维蛋白质印迹相比,将分类纤维合并到纤维类型特异性样品中的好处包括样品多功能性、更高的样品通量、更短的时间投资和节省成本的措施,同时保留了使用均质肌肉样品时经常被忽视的有价值的纤维类型特定信息。该协议的目的是准确有效地鉴定从冻干的人类骨骼肌样品中分离出的I型和II型纤维。

这些单独的纤维随后被组合在一起,以创建I型和II型纤维类型特异性样品。此外,该协议扩展到包括鉴定IIx型纤维,使用肌动蛋白作为MHCI和MHCIIa阴性纤维的标记物,这些纤维通过蛋白质印迹被确认为IIx纤维。然后使用蛋白质印迹技术对每种纤维类型特异性样品进行定量分析。

Introduction

骨骼肌是一种异质性组织,具有不同的细胞代谢和收缩特性,这取决于细胞(纤维)是慢速抽搐(I 型)还是快速抽搐(II 型)。纤维类型可以通过检查肌球蛋白重链 (MHC) 亚型来识别,这些亚型在几个方面彼此不同,包括收缩时间、缩短速度和抗疲劳性1。主要的 MHC 亚型包括 I 型、IIa 型、IIb 型和 IIx 型,其代谢特征为氧化性(I 型和 IIa 型)或糖酵解型(IIx、IIb)1。这些纤维类型的比例因肌肉类型和物种而异。IIb型广泛存在于啮齿动物肌肉中。人体肌肉不含任何 IIb 型纤维,主要由 MHC 亚型 I 型和 IIa 型纤维组成,少量 IIx 纤维2。蛋白质表达谱因不同的纤维类型而异,并且可以随着年龄的增长而改变 3、运动 4,5 和疾病6

由于检查肌肉匀浆(所有纤维类型的混合物),测量不同骨骼肌纤维类型的细胞反应经常被忽视或不可能。单纤维蛋白质印迹法可研究单个肌肉纤维中的多种蛋白质7.该方法以前已被用于产生新颖且信息丰富的单纤维特性,而使用匀浆制剂无法获得这些特性。然而,原始的单纤维蛋白质印迹方法存在一些局限性,包括耗时、无法生成样品重复以及使用昂贵、灵敏的增强化学发光 (ECL) 试剂。如果使用新鲜组织,由于需要在有限的时间范围内(即 1-2 小时)分离单个纤维的时间限制,这种方法会进一步受到限制。幸运的是,通过从冻干组织中分离出单纤维片段来缓解这种限制8。然而,从冻干样本中收集纤维受到活检组织的大小和质量的限制。

使用斑点印迹方法9的纤维类型鉴定已在本综合方案中得到了显着阐述和扩展。先前,已经证明,低至 ~2-10 mg 的湿重肌肉组织就足以进行冷冻干燥和单纤维 MHC 亚型蛋白分析9。Christensen等人9使用30%的~1 mm纤维片段通过斑点印迹检测MHC亚型,并通过蛋白质印迹证实了这一点。这项工作表明,通过用斑点印迹代替蛋白质印迹,总成本降低了 ~40 倍(对于 50 个纤维片段)。然后将纤维“汇集”到 I 型和 II 型样品中,从而允许实验复制9。然而,局限性是仅获得两种纤维类型特异性样品:I型(MHCI阳性)和II型(MHCII阳性纤维),II型样品含有MHCIIa和MHCIIx 6,10的混合物。值得注意的是,当前的协议演示了如何识别纯IIx型光纤,并提供了非常详细的工作流程(如图1所示),包括常见协议问题的故障排除策略。

Protocol

从股外侧肌获得 n = 3(2 名男性,1 名女性),年龄在 70-74 岁,使用局部麻醉(Xylocaine)和 Bergstrom 针头进行手动抽吸11,12。样本是维多利亚大学人类研究伦理委员会 (HRETH11/221) 批准的先前研究的一个子集,并根据赫尔辛基宣言13 进行。参与者提供了参与本研究的书面知情同意书。该协议所需的所有材料的完整详细信息显示在<…

Representative Results

使用斑点印迹法鉴定单个 MHCI、MHCIIa 和 MHCIIx 肌纤维MyDoBID的一个特点是对给定光纤中不同的MHC和肌动蛋白信号强度强度进行分类(图4A)。纤维类型通过是否存在MHCI和IIa亚型来识别(图4B)。6根纤维未检测到MHC或肌动蛋白,表明未收集纤维。该特异性斑点印迹的结果是鉴定了22根II型纤维、7根I型纤维和3根潜在的IIx型纤维;收集了2个不明?…

Discussion

纤维采集
根据几年的经验,大多数研究人员可以掌握这种技术;然而,实践可以更快、更有效地收集纤维,用于下游分析。为了能够分离出 30 个质量的单纤维段进行池化,建议每个样品收集 50 个纤维段。建议仔细研究纤维采集视频,并在进行两次练习(每节~50根纤维)后达到合理的标准。所有收集的纤维都经过MyDoBID以识别纤维类型,这将揭示该技术的执行效率。这将被视为在光纤…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

本研究中使用的抗 MHC I (A4.840) 和 MHCIIa (A4.74) 的抗体由 HM Blau 博士开发,抗 MHCIIx (6H1) 的抗体由 CA Lucas 博士开发,并从发育研究杂交瘤库 (DSHB) 获得,感谢国家儿童健康与人类发展研究所的主持,并由爱荷华大学维护, 生物科学系(爱荷华州爱荷华市)。我们感谢 Victoria L. Wyckelsma 为这项研究提供人体肌肉样本。图 1 中的大多数图像来自 BioRender.com。

资金:
这项研究没有得到任何外部资助。

Materials

1x Denaturing buffer Make according to recipe Constituents can be sourced from Sigma-Aldrich or other chemical distributing companies  1x denaturing buffer is made by diluting 3x denaturing buffer 1 in 3 v/v with 1X Tris-HCl (pH 6.8). Store at -20 °C.
3x Denaturing buffer Make according to recipe Constituents can be sourced from Sigma-Aldrich or other chemical distributors 3x denaturing buffer contains: 0.125M Tris-HCI, 10% glycerol, 4% SDS, 4 M urea, 10% 2-mercaptoethanol, and 0.001% bromophenol blue, pH 6.8.  Store at -20 °C.
95% Ethanol N/A 100% ethanol can be sourced from any company Diluted to 95% with ultra-pure H2O.
Actin rabbit polyclonal antibody Sigma-Aldrich   A2066 Dilute 1 in 1,000 with BSA buffer.
Analytical scales Mettler Toledo Model number: MSZ042101
Antibody enhancer Thermo Fischer Scientific 32110 Product name is Miser Antibody Extender Solution NC.
Beaker (100 mL) N/A N/A
Benchtop centrifuge Eppendorf 5452 Model name: Mini Spin.
Blocking buffer: 5% Skim milk in Wash buffer. Diploma Store bought
BSA buffer: 1 % BSA/PBST, 0.02 % NaN3 BSA: Sigma-Aldrich              PBS: Bio-Rad Laboratories. NaN3 : Sigma-Aldrich  BSA: A6003-25G                         10x PBS: 1610780                       NaN3: S2002 Bovine serum albumin (BSA), Phosphate-buffered saline (PBS), and Sodium azide (NaN3). Store at 4 °C.
Cassette opening lever  Bio-Rad Laboratories 4560000 Used to open the precast gel cassettes.
Chemidoc MP Imager  Bio-Rad Laboratories Model number: Universal hood III Any imaging system with Stain-Free gel imaging capabilities.
Criterion blotter Bio-Rad Laboratories 1704070 Includes ice pack, transfer tray, roller, 2 cassette holders, filter paper, foam pads and lid with cables.
Criterion Cell (Bio-Rad) Bio-Rad Laboratories 1656001
ECL (enhanced chemiluminescence) Bio-Rad Laboratories 1705062 Product name: Clarity Max Western ECL Substrate.
Electrophoresis buffer 1x Tris Glycine SDS (TGS) Bio-Rad Laboratories 1610772 Dilute 10x TGS 1 in 10 with ultra-pure H2O.
Filter paper, 0.34 mm thick Whatmann 3030917 Bulk size 3 MM, pack 100 sheets, 315 x 335 mm.
Fine tissue dissecting forceps Dumont F6521-1EA Jeweller’s forceps no. 5.
Flat plastic tray/lid   N/A N/A Large enough to place the membrane on. Ensure the surface is completely flat.
Freeze-drying System Labconco 7750030 Freezone 4.5 L with glass chamber sample stage.
Freezer -80 o N/A N/A Any freezer with a constant temperature of -80 °C is suitable.
Gel releasers 1653320 Bio-Rad Slide under the membrane to gather or move the membrane.
Grey lead pencil N/A N/A
 Image lab software  Bio-Rad Laboratories N/A Figures refers to software version 5.2.1 but other versions can used.
Incubator Bio-Rad Laboratories 1660521 Any incubator that can be set to 37 °C would suffice.
Lamp N/A N/A
Magnetic stirrer with flea N/A N/A
Membrane roller  Bio-Rad Laboratories 1651279 Can be purchased in the Transfer bundle pack. However, if this product is not available, any smooth surface cylindrical tube long enough to roll over the membrane would suffice. 
Microcentrifuge tubes  (0.6 mL) N/A N/A
Mouse IgG HRP secondary Thermo Fisher Scientific 31430 Goat anti-Mouse IgG (H+L), RRID AB_228341. Dilute at 1 in 20,000 in blocking buffer.
Mouse IgM HRP secondary Abcam ab97230 Goat Anti-Mouse IgM mu chain. Use at the same dilution as mouse IgG.
Myosin Heavy Chain I (MHCI) primary antibody DSHB A4.840  Dilution range: 1 in 200 to 1 in 500 in BSA buffer.
Myosin Heavy Chain IIa (MHCIIa) primary antibody DSHB A4.74  Dilution range: 1 in 200 to 1 in 500 in BSA buffer.
Myosin Heavy Chain IIx (MHCIIx) primary antibody DSHB 6H1 Dilution range: 1 in 200 to 1 in 500 in BSA buffer.
Nitrocellulose Membrane 0.45 µm  Bio-Rad Laboratories 1620115 For Western blotting.
Petri dish lid N/A N/A
Plastic tweezers N/A N/A
Power Pack  Bio-Rad Laboratories 164-5050 Product name: Basic power supply.
Protein ladder Thermo Fisher Scientific 26616 PageRuler Prestained Protein Ladder, 10 to 180 kDa.
PVDF Membrane 0.2 µm Bio-Rad Laboratories 1620177
Rabbit HRP secondary Thermo Fisher Scientific 31460 Goat anti-Rabbit IgG (H+L), RRID AB_228341. Dilution same as mouse secondary antibodies.
Rocker N/A N/A
Ruler N/A N/A
Scissors N/A N/A
Stereomicroscope Motic SMZ-168
Stripping buffer Thermo Fisher Scientific 21059 Product name: Restore Western Blot Stripping Buffer.
Tissue (lint free) Kimberly-Clark professional 34120 Product name: Kimwipe.
Transfer buffer (1x Tris Glycine buffer (TG), 20% Methanol) TG: Bio-Rad Laboratories   Methanol: Merck TG buffer: 1610771           Methanol: 1.06018 dilute 10x TG buffer with ultra-pure H2O to 1x. Add 100% Methanol to a final concentration of 20% Methanol. Store at 4 °C.
Transfer tray Bio-Rad Laboratories 1704089
 UV-activation precast gel Bio-Rad Laboratories 5678085 Gel type: 4–15% Criterion TGX Stain-Free Protein Gel, 26 well, 15 µL.
Vortex N/A N/A
Wash buffer (1x TBST) 10x TBS: Astral Scientific  Tween 20: Sigma  BIOA0027-4L 1x TBST recipe: 10x Tris-buffered saline (TBS) is diluted down to 1x with ultra-pure H2O, Tween 20 is added to a final concentration of 0.1%. Store buffer at 4 °C.
Wash containers Sistema Store bought Any tupperware container, that suits the approximate dimensions of the membrane would suffice.

Referencias

  1. Schiaffino, S., Reggiani, C. Fiber types in mammalian skeletal muscles. Physiological Reviews. 91 (4), 1447-1531 (2011).
  2. Bloemberg, D., Quadrilatero, J. Rapid determination of myosin heavy chain expression in rat, mouse, and human skeletal muscle using multicolor immunofluorescence analysis. PLoS One. 7 (4), e35273 (2012).
  3. Wyckelsma, V. L., et al. Cell specific differences in the protein abundances of GAPDH and Na(+),K(+)-ATPase in skeletal muscle from aged individuals. Experimental Gerontology. 75, 8-15 (2016).
  4. Morales-Scholz, M. G., et al. Muscle fiber type-specific autophagy responses following an overnight fast and mixed meal ingestion in human skeletal muscle. American Journal of Physiology Endocrinology and Metabolism. 323 (3), e242-e253 (2022).
  5. Tripp, T. R., et al. Time course and fibre type-dependent nature of calcium-handling protein responses to sprint interval exercise in human skeletal muscle. The Journal of Physiology. 600 (12), 2897-2917 (2022).
  6. Frankenberg, N. T., Mason, S. A., Wadley, G. D., Murphy, R. M. Skeletal muscle cell-specific differences in type 2 diabetes. Cellular and Molecular Life Sciences. 79 (5), 256 (2022).
  7. Murphy, R. M., et al. Activation of skeletal muscle calpain-3 by eccentric exercise in humans does not result in its translocation to the nucleus or cytosol. Journal of Applied Physiology. 111 (5), 1448-1458 (2011).
  8. Murphy, R. M. Enhanced technique to measure proteins in single segments of human skeletal muscle fibers: fiber-type dependence of AMPK-alpha1 and -beta1. Journal of Applied Physiology. 110 (3), 820-825 (2011).
  9. Christiansen, D., et al. A fast, reliable and sample-sparing method to identify fibre types of single muscle fibres. Scientific Reports. 9 (1), 6473 (2019).
  10. Skelly, L. E., et al. Human skeletal muscle fiber type-specific responses to sprint interval and moderate-intensity continuous exercise: acute and training-induced changes. Journal of Applied Physiology. 130 (4), 1001-1014 (2021).
  11. Bergstrom, J. Muscle electrolytes in man. Scandinavian Journal of Clinical and Laboratory Investigation. (SUPPL. 68), 1-110 (1962).
  12. Evans, W. J., Phinney, S. D., Young, V. R. Suction applied to a muscle biopsy maximizes sample size. Medicine & Science in Sports & Exercise. 14 (1), 101-102 (1982).
  13. Wyckelsma, V. L., et al. Preservation of skeletal muscle mitochondrial content in older adults: relationship between mitochondria, fibre type and high-intensity exercise training. The Journal of Physiology. 595 (11), 3345-3359 (2017).
  14. Bortolotto, S. K., Stephenson, D. G., Stephenson, G. M. Fiber type populations and Ca2+-activation properties of single fibers in soleus muscles from SHR and WKY rats. American Journal of Physiology Cell Physiology. 276 (3), C628-C637 (1999).
  15. Murphy, R. M., Lamb, G. D. Important considerations for protein analyses using antibody based techniques: down-sizing Western blotting up-sizes outcomes. The Journal of Physiology. 591 (23), 5823-5831 (2013).
  16. Lucas, C. A., Kang, L. H., Hoh, J. F. Monospecific antibodies against the three mammalian fast limb myosin heavy chains. Biochemical and Biophysical Research Communications. 272 (1), 303-308 (2000).
  17. MacInnis, M. J., et al. Superior mitochondrial adaptations in human skeletal muscle after interval compared to continuous single-leg cycling matched for total work. The Journal of Physiology. 595 (9), 2955-2968 (2017).

Play Video

Citar este artículo
Latchman, H. K., Wette, S. G., Ellul, D. J., Murphy, R. M., Frankenberg, N. T. Fiber Type Identification of Human Skeletal Muscle. J. Vis. Exp. (199), e65750, doi:10.3791/65750 (2023).

View Video