Summary

测量通过不同制造工艺获得的玻璃纤维增强聚合物复合层压板的机械性能

Published: June 30, 2023
doi:

Summary

本文介绍了使用湿手糊/真空袋法获得的纤维增强聚合物基复合材料层合板的制造工艺。

Abstract

传统的湿手糊工艺(WL)已广泛应用于纤维复合材料层压板的制造。然而,由于成型压力不足,纤维的质量分数降低,内部滞留大量气泡,导致层压板质量低下(刚度和强度低)。用于制造复合层压板的湿手糊/真空袋(WLVB)工艺是在传统湿手糊工艺的基础上,使用真空袋去除气泡并提供压力,然后进行加热和固化过程。

与传统的手糊工艺相比,WLVB工艺制造的层压板表现出优异的机械性能,包括更好的强度和刚度、更高的纤维体积分数和更低的空隙体积分数,这些都是复合材料层压板的优势。这个过程完全是手工的,受准备人员技能的影响很大。因此,产品容易出现空隙和厚度不均匀等缺陷,导致层压板的质量和机械性能不稳定。因此,有必要详细描述WLVB工艺,精细控制步骤,量化材料比例,以确保层压板的机械性能。

本文介绍了WLVB工艺制备编织平纹玻璃纤维增强复合材料层合板(GFRPs)的细致工艺。采用公式法计算层合板的纤维体积含量,计算结果显示,WL层合板的纤维体积含量为42.04%,而WLVB层合板的纤维体积含量为57.82%,提高了15.78%。使用拉伸和冲击测试表征层压板的机械性能。实验结果表明,采用WLVB工艺,层合板的强度和模量分别提高了17.4%和16.35%,比吸收能提高了19.48%。

Introduction

纤维增强聚合物复合材料(FRP)是一种由纤维增强材料和聚合物基体混合而成的高强度材料1,2,3由于其密度低、比刚度和强度高、疲劳性能好、耐腐蚀性好等特点,被广泛应用于航空航天456、建筑78、汽车9、船舶101等行业。常见的合成纤维包括碳纤维、玻璃纤维和芳纶纤维12。本文选择玻璃纤维进行研究。与传统钢相比,玻璃纤维增强复合层压板(GFRPs)更轻,密度不到三分之一,但可以达到比钢更高的比强度。

FRP的制备工艺包括真空辅助树脂传递模塑(VARTM)13、纤维缠绕(FW)14和预浸料成型,以及许多其他先进的制造工艺15,16,17,18与其他制备工艺相比,湿手糊/真空袋(WLVB)工艺具有设备要求简单、工艺技术不复杂等优点,产品不受尺寸和形状的限制。该工艺具有高度的自由度,可以与金属、木材、塑料或泡沫集成。

WLVB工艺的原理是通过真空袋施加更大的成型压力,以增强制备的层压板的机械性能;该工艺的生产工艺易于掌握,是一种经济、简单的复合材料制备工艺。这个过程完全是手工的,受准备人员技能的影响很大。因此,产品容易出现空隙和厚度不均匀等缺陷,导致层压板的质量和机械性能不稳定。因此,有必要详细描述WLVB工艺,精细控制步骤,量化材料比例,以获得高稳定性的层压板机械性能。

大多数研究人员研究了复合材料的准静态19,20,21,22,23和动态行为24,25,26,27,28,以及性能改性29,30纤维与基体的体积分数比对玻璃钢层压板的力学性能起着至关重要的作用。在适当的范围内,较高的纤维体积分数可以提高玻璃钢层压板的强度和刚度。Andrew等[31]研究了纤维体积分数对熔融沉积成型(FDM)增材制造工艺制备的试样力学性能的影响。结果表明,当纤维体积分数为22.5%时,拉伸强度效率达到最大,当纤维体积分数达到33%时,强度略有提高。Khalid等[32]研究了具有不同纤维体积分数的连续碳纤维(CF)增强3D打印复合材料的力学性能,结果表明,拉伸强度和刚度均随着纤维含量的增加而提高。Uzay等[33]研究了手糊、压缩成型和真空袋3种制备方法对碳纤维增强聚合物(CFRP)力学性能的影响。测量层压板的纤维体积分数和空隙,进行拉伸和弯曲试验。实验表明,纤维体积分数越高,力学性能越好。

空隙是玻璃钢层压板中最常见的缺陷之一。空隙会降低复合材料的机械性能,例如强度、刚度和抗疲劳性34.空隙周围产生的应力集中促进了微裂纹的扩展,降低了钢筋与基体之间的界面强度。内部空隙还会加速FRP层压板的吸湿性,导致界面脱粘和性能下降。因此,内部空隙的存在影响了复合材料的可靠性,限制了复合材料的广泛应用。Zhu等[35 ]研究了空隙率对CFRP复合材料层合板静态层间剪切强度性能的影响,发现空隙率在0.4%-4.6%之间增加1%会导致层间剪切强度下降2.4%。Scott等[36 ]利用计算机断层扫描(CT)研究了静水载荷作用下CFRP复合材料层合板空隙对损伤机理的影响,发现空隙数量是随机分布裂纹数量的2.6-5倍。

使用高压釜可以制造高质量和可靠的FRP层压板。Abraham 等人 37 通过将 WLVB 组件放置在压力为 1.2 MPa 的高压釜中进行固化来制造低孔隙率、高纤维含量的层压板。然而,高压灭菌器是一种大型且昂贵的设备,导致相当大的制造成本。真空辅助树脂转移工艺(VARTM)虽然已经使用了很长时间,但在时间成本、制备工艺更复杂、导流管、导流介质等一次性耗材较多等方面存在局限性。与WL工艺相比,WLVB工艺通过低成本的真空袋补偿成型压力不足,从系统中吸收多余的树脂,以增加纤维体积分数并降低内部孔隙含量,从而大大提高层压板的机械性能。

本文探讨了WL工艺与WLVB工艺的区别,并详细介绍了WLVB工艺的细致工艺。采用公式法计算层合板的纤维体积含量,结果表明,WL层合板的纤维体积含量为42.04%,而WLVB层合板的纤维体积含量为57.82%,提高了15.78%。层压板的机械性能通过拉伸和冲击试验进行表征。实验结果表明,采用WLVB工艺,层合板的强度和模量分别提高了17.4%和16.35%,比吸收能提高了19.48%。

Protocol

1、材料准备 用剪刀剪下八块 300 毫米 x 300 毫米的玻璃纤维编织布。先用胶带粘住切口,以防止纤维丝脱落。注意: 在切割织物时,请戴上口罩和手套,以防止手指刺伤和吸入细丝。不仅有玻璃纤维编织物,还有单向织物和其他类型的纤维,如碳纤维和芳纶纤维。 按10:3的质量比称出环氧树脂260g和硬化剂78g。注:纤维织物与树脂体系的比例建议为每平方米单层?…

Representative Results

表 1 显示了样品的纤维体积分数、平均厚度和制造工艺。G8-WLVB 和 G8-WL 分别代表了由 8 层玻璃织物组成的层压板,这些层压板分别采用和不采用真空袋工艺,采用湿手糊法制造。显然,在真空袋的辅助下,层压板的纤维体积分数增加了15.78%,平均厚度减少了16.27%。 WLVB和WL试样拉伸试验得到的应变-应力曲线如图 4所示。纵轴显示由力除以横截…

Discussion

本文重点介绍了两种不同的低成本手糊法制造工艺。因此,本文选择了两种制造工艺进行仔细描述,它们更简单、更容易掌握、投资成本较低,并且适合在实验室和小规模工厂进行材料改性生产。在层压板的固化过程中,高固结压力在制造高质量的层压板中起着重要作用。在没有足够外部压力的情况下采用传统的WL工艺会导致树脂体积分数过高。树脂体积大是降低层压板机械性能的主要因素之一?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者感谢国家重点研发计划(编号:2022YFB3706503)和深圳市自然科学基金稳定支持计划计划(编号:20220815133826001)的资助。

Materials

breather fabric Easy composites BR180
drop-weight impact testing machine Instron 9340
Epoxy matrix Axson Technologies 5015/5015
glass fiber Weihai Guangwei Composites W-9311
non-porous release film Easy composites R240
Peel ply  Sino Composite CVP200
perforated released film Easy composites R120-P3
test machine ZwickRoell 250kN
vacuum film Easy composites GVB200

Referencias

  1. Ramesh, M. Flax (Linum usitatissimum L.) fibre reinforced polymer composite materials: A review on preparation, properties and prospects. Progress in Materials Science. 102, 109-166 (2019).
  2. Singh, T. Optimum design based on fabricated natural fiber reinforced automotive brake friction composites using hybrid CRITIC-MEW approach. Journal of Materials Research and Technology. 14, 81-92 (2021).
  3. Li, Z. -. J., Dai, H. -. L., Liu, Z. -. G., Wang, Y. Micro-CT based parametric modeling and damage analysis of three-dimensional rotary-five-directional braided composites under tensile load. Composite Structures. 309, 116734 (2023).
  4. Rodríguez-García, V., de Villoria, R. G. Automated manufacturing of bio-inspired carbon-fibre reinforced polymers. Composites Part B: Engineering. 215, 108795 (2021).
  5. Atas, C., Akgun, Y., Dagdelen, O., Icten, B. M., Sarikanat, M. An experimental investigation on the low velocity impact response of composite plates repaired by VARIM and hand lay-up processes. Composite Structures. 93 (3), 1178-1186 (2011).
  6. Found, M. S., Friend, M. J. Evaluation of CFRP panels with scarf repair patches. Composite Structures. 32 (1-4), 115-122 (1995).
  7. Das, S. Urologic laparoscopy: The future is now. The Urologic Clinics of North America. 28 (1), 1-3 (2001).
  8. Zhang, J., Chaisombat, K., He, S., Wang, C. H. Hybrid composite laminates reinforced with glass/carbon woven fabrics for lightweight load bearing structures. Materials & Design (1980-2015). 36, 75-80 (2012).
  9. Caltagirone, P. E., et al. Substitution of virgin carbon fiber with low-cost recycled fiber in automotive grade injection molding polyamide 66 for equivalent composite mechanical performance with improved sustainability. Composites Part B: Engineering. 221, 109007 (2021).
  10. Kini, M. V., Pai, D. The ageing effect on static and dynamic mechanical properties of fibre reinforced polymer composites under marine environment- a review. Materials Today: Proceedings. 52, 689-696 (2022).
  11. Kolat, K., Neşer, G., Özes, &. #. 1. 9. 9. ;. The effect of sea water exposure on the interfacial fracture of some sandwich systems in marine use. Composite Structures. 78 (1), 11-17 (2007).
  12. Kretsis, G. A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites. 18 (1), 13-23 (1987).
  13. Kim, J. -. H., Shin, P. -. S., Kwon, D. -. J., DeVries, K. L., Park, J. -. M. Evaluation of interfacial, dispersion, and thermal properties of carbon Fiber/ABC added epoxy composites manufactured by VARTM and RFI methods. Composites Part A: Applied Science and Manufacturing. 151, 106660 (2021).
  14. Vargas-Rojas, E. Prescriptive comprehensive approach for the engineering of products made with composites centered on the manufacturing process and structured design methods: Review study performed on filament winding. Composites Part B: Engineering. 243, 110093 (2022).
  15. Pishvar, M., Amirkhosravri, M., Altan, M. C. Magnet assisted composite manufacturing: a flexible new technique for achieving high consolidation pressure in vacuum bag/lay-up processes. Journal of Visualized Experiments. (135), e57254 (2018).
  16. Lee, D., Lee, D. G., Lim, J. W. Experimental implementation of a new composite fabrication method: exposing bare fibers on the composite surface by the soft layer method. Journal of Visualized Experiments. (128), e55815 (2017).
  17. Frey, M., et al. Fabrication and design of wood-based high-performance composites. Journal of Visualized Experiments. (153), e60327 (2019).
  18. Li, P. C., Zhang, X. M., Xie, W. F., Hoa, S. V. Operation of the collaborative composite manufacturing (CCM) system. Journal of Visualized Experiments. (152), e59969 (2019).
  19. Taheri-Behrooz, F., Esmkhani, M., Yaghoobi-Chatroodi, A., Ghoreishi, S. M. Out-of-plane shear properties of glass/epoxy composites enhanced with carbon-nanofibers. Polymer Testing. 55, 278-286 (2016).
  20. Taheri-Behrooz, F., Bakhshan, H. Characteristic length determination of notched woven composites. Advanced Composite Materials. 27 (1), 67-83 (2018).
  21. Uzay, C., Cetin, A., Geren, N., Bayramoglu, M., Tutuncu, N. Predicting the tensile stiffness and strength properties of plain woven carbon fiber/epoxy laminates: a practical analytical approach and experimental validations. Mechanics of Advanced Materials and Structures. , (2020).
  22. Cetin, A., Uzay, C., Geren, N., Bayramoglu, M., Tutuncu, N. A practical approach to predict the flexural properties of woven plain carbon fiber/epoxy laminates. Mechanics of Advanced Materials and Structures. 30 (9), 1801-1811 (2023).
  23. Villegas, I. F., Palardy, G. Ultrasonic welding of thermoplastic composite coupons for mechanical characterization of welded joints through single lap shear testing. Journal of Visualized Experiments. (108), e53592 (2016).
  24. Zhang, J., et al. Energy dissipation mechanism of fiber metal laminate under low-velocity impact. Thin-Walled Structures. 183, 110355 (2023).
  25. Fakhreddini-Najafabadi, S., Torabi, M., Taheri-Behrooz, F. An experimental investigation on the low-velocity impact performance of the CFRP filled with nanoclay. Aerospace Science and Technology. 116, 106858 (2021).
  26. Taheri-Behrooz, F., Shokrieh, M. M., Yahyapour, I. Effect of stacking sequence on failure mode of fiber metal laminates under low-velocity impact. Iranian Polymer Journal. 23 (2), 147-152 (2014).
  27. Zhang, X., et al. Rate dependent behaviors of nickel-based microcapsules. Applied Physics Letters. 112 (22), 221905 (2018).
  28. Li, X., Xu, R., Zhang, X., Zhang, H., Yang, J. Inner blast response of fiber reinforced aluminum tubes. International Journal of Impact Engineering. 172, 104416 (2023).
  29. Zhang, X., et al. Optimization of shear thickening fluid encapsulation technique and dynamic response of encapsulated capsules and polymeric composite. Composites Science and Technology. 170, 165-173 (2019).
  30. Wang, P. F., et al. Energy absorption mechanisms of modified double-aluminum layers under low-velocity impact. International Journal of Applied Mechanics. 7 (6), 1550086 (2015).
  31. Dickson, A. N., Barry, J. N., McDonnell, K. A., Dowling, D. P. Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing. Additive Manufacturing. 16, 146-152 (2017).
  32. Saeed, K., et al. Characterization of continuous carbon fibre reinforced 3D printed polymer composites with varying fibre volume fractions. Composite Structures. 282, 115033 (2022).
  33. Uzay, &. #. 1. 9. 9. ;., Çetin, A., Geren, N. Physical and mechanical properties of laminar composites depending on the production methods: an experimental investigation. Sādhanā. 47 (4), 262 (2022).
  34. Mehdikhani, M., Gorbatikh, L., Verpoest, I., Lomov, S. V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. Journal of Composite Materials. 53 (12), 1579-1669 (2019).
  35. Zhu, H., Wu, B., Zhang, D., Li, D., Chen, Y. Effect of void on the interlaminar shear fatigue of carbon fiber/epoxy composite laminates. Acta Materiae Compositae Sinica. 27 (6), 32-37 (2010).
  36. Scott, A. E., Sinclair, I., Spearing, S. M., Mavrogordato, M. N., Hepples, W. Influence of voids on damage mechanisms in carbon/epoxy composites determined via high resolution computed tomography. Composites Science and Technology. 90, 147-153 (2014).
  37. Abraham, D., Matthews, S., McIlhagger, R. A comparison of physical properties of glass fibre epoxy composites produced by wet lay-up with autoclave consolidation and resin transfer moulding. Composites Part A: Applied Science and Manufacturing. 29 (7), 795-801 (1998).
  38. Li, M., et al. Evaluation of through-thickness permeability and the capillary effect in vacuum assisted liquid molding process. Composites Science and Technology. 72 (8), 873-878 (2012).
  39. Bortz, D. R., Merino, C., Martin-Gullon, I. Mechanical characterization of hierarchical carbon fiber/nanofiber composite laminates. Composites Part A: Applied Science and Manufacturing. 42 (11), 1584-1591 (2011).
  40. Taheri-Behrooz, F., Moghaddam, H. S. Nonlinear numerical analysis of the V-notched rail shear test specimen. Polymer Testing. 65, 44-53 (2018).

Play Video

Citar este artículo
Lai, J., Zhang, X., Zhang, X. Measuring the Mechanical Properties of Glass Fiber Reinforcement Polymer Composite Laminates Obtained by Different Fabrication Processes. J. Vis. Exp. (196), e65376, doi:10.3791/65376 (2023).

View Video