Die Fruchtfliege (Drosophila melanogaster) wird häufig in der biologischen und toxikologischen Forschung eingesetzt. Um den Nutzen von Fliegen zu erweitern, haben wir ein Instrument entwickelt, das serielle Anästhesie-Array, das mehrere Fliegenproben gleichzeitig flüchtigen Allgemeinanästhetika (VGAs) aussetzt, wodurch es möglich ist, die Kollateraleffekte (toxisch und schützend) von VGAs zu untersuchen.
Flüchtige Allgemeinanästhetika (VGAs) werden weltweit bei Millionen von Menschen jeden Alters und jeder Erkrankung eingesetzt. Hohe Konzentrationen von VGAs (Hunderte von mikromolaren bis niedrigen Millimolaren) sind notwendig, um eine tiefgreifende und unphysiologische Unterdrückung der Gehirnfunktion zu erreichen, die sich für den Beobachter als “Anästhesie” darstellt. Das gesamte Spektrum der Kollateraleffekte, die durch solch hohe Konzentrationen lipophiler Wirkstoffe ausgelöst werden, ist nicht bekannt, aber Wechselwirkungen mit dem immun-inflammatorischen System wurden festgestellt, obwohl ihre biologische Bedeutung nicht verstanden ist.
Um die biologischen Wirkungen von VGAs bei Tieren zu untersuchen, haben wir ein System entwickelt, das als serielles Anästhesie-Array (SAA) bezeichnet wird, um die experimentellen Vorteile der Fruchtfliege (Drosophila melanogaster) zu nutzen. Die SAA besteht aus acht Kammern, die in Reihe angeordnet und mit einem gemeinsamen Zufluss verbunden sind. Einige Teile sind im Labor erhältlich, andere können einfach hergestellt oder gekauft werden. Ein Vaporizer, der für die kalibrierte Verabreichung von VGAs notwendig ist, ist die einzige kommerziell hergestellte Komponente. VGAs machen nur einen kleinen Prozentsatz der Atmosphäre aus, die während des Betriebs durch die SAA strömt, da der Großteil (typischerweise über 95 %) Trägergas ist. Der Standard-Spediteur ist Luft. Sauerstoff und andere Gase können jedoch untersucht werden.
Der Hauptvorteil der SAA gegenüber früheren Systemen besteht darin, dass sie die gleichzeitige Exposition mehrerer Kohorten von Fliegen bei exakt titrierbaren Dosen von VGAs ermöglicht. Identische Konzentrationen von VGAs werden innerhalb von Minuten in allen Kammern erreicht, wodurch ununterscheidbare Versuchsbedingungen geschaffen werden. Jede Kammer kann von einer einzelnen Fliege bis zu Hunderten von Fliegen reichen. Zum Beispiel kann die SAA gleichzeitig acht verschiedene Genotypen oder vier Genotypen mit unterschiedlichen biologischen Variablen (z. B. männlich vs. weiblich, alt vs. jung) untersuchen. Wir haben die SAA verwendet, um die Pharmakodynamik von VGAs und ihre pharmakogenetischen Interaktionen in zwei experimentellen Fliegenmodellen zu untersuchen, die mit neuroinflammationsbedingten mitochondrialen Mutanten und Schädel-Hirn-Trauma (SHT) assoziiert sind.
Die Existenz von kollateralen Anästhesieeffekten (d.h. Effekte, die nicht sofort beobachtbar sind, aber verzögerte Verhaltensfolgen haben können) ist allgemein anerkannt, aber das Verständnis ihrer Mechanismen und Risikofaktoren bleibt rudimentär 1,2. Ihre verzögerte Manifestation und Subtilität begrenzen die Anzahl potenziell wichtiger Variablen, die in Säugetiermodellen innerhalb eines angemessenen Zeitrahmens und zu akzeptablen Kosten untersucht werden können. Die Fruchtfliege (Drosophila melanogaster) bietet einzigartige Vorteile im Zusammenhang mit neurodegenerativen Erkrankungen3 und für das toxikologische Screening4, die bisher nicht zur Untersuchung von anästhesierenden Kollateraleffekten eingesetzt wurden.
Wir haben das serielle Anästhesie-Array (SAA) entwickelt, um den Einsatz von Fruchtfliegen bei der Untersuchung der Pharmakodynamik und Pharmakogenetik von Anästhetika zu erleichtern. Ein wesentlicher Vorteil der SAA ist die gleichzeitige Exposition bei identischen Versuchsbedingungen mehrerer Kohorten. In Verbindung mit der experimentellen Flexibilität von Fruchtfliegen ermöglicht der hohe Durchsatz der SAA die Erforschung biologischer und umweltbezogener Variablen in einem Maßstab, der in Säugetiermodellen unmöglich ist.
Im Prinzip handelt es sich bei der SAA einfach um eine Reihe von miteinander verbundenen Anästhesiestellen (Kammern aus 50-ml-Fläschchen), durch die ein Trägergas flüchtige Wirkstoffe abgibt. Die erste Kammer des Systems enthält destilliertes Wasser, durch das das Trägergas befeuchtet wird (Fliegen reagieren empfindlich auf Austrocknung), und endet mit einem einfachen Durchflussindikator, der den Gasfluss durch das System anzeigt. Feine Netze, die an den Öffnungen der Verbindungsschläuche angebracht sind, trennen die Kammern, um die Wanderung von Fliegen zwischen den Kammern zu verhindern. Die Anzahl der Stellen “in Reihe” ist durch den Widerstand gegen den drucklosen Gasstrom (Schläuche, Netze) begrenzt.
Wir haben die Kinetik dieses SAA-Prototyps in einer früheren Publikation5 charakterisiert. Obwohl die genauen pharmakokinetischen Eigenschaften zwischen den SAAs variieren, sind die relevanten Grundlagen, die experimentell getestet wurden, wie folgt: (i) Ein anfänglicher Fluss von 1,5-2 l/min gleicht alle Kammern (Gesamtvolumen von ±550 ml) mit der gewünschten Konzentration des Anästhetikums innerhalb von 2 Minuten aus; ii) die Konzentration des in die Kammern abgegebenen Anästhesiedampfes sich zwischen der ersten und der letzten Stelle nicht nennenswert ändert, weil die Menge des Anästhetikums, die im Gasvolumen in einer einzelnen Kammer (50 ml) enthalten ist, die von einer beliebigen Anzahl von Fliegen aufgenommene Menge bei weitem übersteigt; und (iii) sobald die Kammern ausgeglichen sind, kann der Trägergasstrom reduziert werden (50-100 ml/min oder weniger), um Verschwendung und Kontamination der Umwelt zu vermeiden (flüchtige Anästhetika haben Treibhausgaseigenschaften). Der minimale Durchfluss, der zur Aufrechterhaltung einer stationären Dampfkonzentration erforderlich ist, hängt in erster Linie von der Undichtigkeit des SAA ab, da die Dampfaufnahme durch die Fliegen vernachlässigbar ist. Unter diesen Standardbedingungen (2 % Isofluran und 1,5 l/min Trägergasfluss) werden die Fliegen innerhalb von 3-4 Minuten in allen Positionen des Arrays betäubt (d. h. unbeweglich), mit unmerklichen Unterschieden zwischen den Positionen. VGAs können Minuten bis Stunden lang verabreicht werden, und unsere typischen Belichtungsparadigmen liegen im Bereich von 15 Minuten bis 2 Stunden. Um das System zu spülen, wird der Verdampfer ausgeschaltet und der Durchfluss wird aufrechterhalten, um etwa das 10-fache des Arrays auszutauschen (1,5 l/min für 5 min). Die Geschwindigkeit der Anästhesieelimination hängt von der eingestellten Flussrate ab.
Flüchtige Anästhetika interagieren mit zahlreichen noch nicht identifizierten Zielen, einschließlich des immuninflammatorischen Systems6. Der Beitrag einzelner molekularer Zielstrukturen zu primären versus kollateralen Endpunkten (der “Anästhesiezustand” vs. lang- und kurzfristige “Nebenwirkungen”) ist nur unzureichend verstanden. Daher ist ein empfindliches Fliegensystem mit hohem Durchsatz wertvoll, um Experimente an höheren Tieren zu unterstützen, trotz der offensichtlichen Unterschiede zwischen Fliegen und Säugetieren7. Einige Unterschiede können in der Tat vorteilhaft sein; Zum Beispiel unterscheidet sich das Immunsystem der Fliege von dem höherer Tiere dadurch, dass ihm der adaptive Arm der Antwort fehlt8. Auch wenn dies wie eine Einschränkung für das Verständnis von Krankheiten beim Menschen erscheinen mag, bietet es eine einzigartige Gelegenheit, die Interaktion von VGAs mit der angeborenen immuninflammatorischen Antwort isoliert von der adaptiven Antwort zu untersuchen9. Dies ermöglicht es, die pharmakologischen Wirkungen von VGA auf Entzündungen und deren Modulation durch die unterschiedlichen genetischen Hintergründe einer Population zu untersuchen.
Zu den kritischen Schritten bei der Konstruktion des SAA gehört die Gewährleistung einer dichten Passform, um ein Austreten des Anästhesiegemisches zu vermeiden. Der SAA muss in einem Abzug untergebracht werden, um eine Kontamination des Laborraums zu vermeiden. Alle Elemente von den Trägergasflaschen bis zum Durchflussanzeiger nach dem SAA sollten wie in der Checkliste beschrieben überprüft werden.
Andere Verfahren zur Verabreichung von VGAs an Fliegen sind kompliziert zu bedienen (das Inebriometer)21, haben einen geringen Durchsatz 22, erlauben nicht die gleichzeitige Exposition mehrerer Populationen23, erlauben keine präzise Kontrolle der Anästhesiekonzentration 21 oder haben einen Messwert, der schwer in klinisch akzeptierte Begriffe zu übersetzenist 24.
Die aktuelle Version des SAA stützt sich auf einen kommerziellen Verdampfer, und daher sind toxikologische Studien auf flüchtige Anästhetika beschränkt. Bei Verwendung mit anderen flüchtigen Substanzen kann ein Vaporizer nach der Kalibrierung des Ausgangs “off label” verwendet werden. Alternativ könnte ein anderes Verfahren zum Verdampfen der flüchtigen Substanzen angewandt werden, das spezielle Messungen zur Titration der Wirkstoffkonzentrationen erfordern würde, wie zuvor beschrieben25.
Abgesehen von den Durchflussanzeigen gibt es keine Alarme (d.h. wenn die Tanks leer sind, wird der Durchfluss durch den SAA unterbrochen). Abhängig von der Intensität der Nutzung muss der SAA möglicherweise gereinigt, festgezogen und möglicherweise der Tygon-Schlauch ausgetauscht werden. Wir haben unsere originale SAA in 7 Jahren zweimal “gewartet”.
Diese Methode zur Betäubung von Fruchtfliegen ermöglicht es, den genetischen Werkzeugkasten, der den Drosophila-Forschern zur Verfügung steht, in einem Hochdurchsatzsystem zu nutzen. Mehrere Kohorten von Fliegen unterschiedlicher Populationen (z.B. Genotyp, Alter, Geschlecht) können gleichzeitig identischen Anästhetikakonzentrationen und der gewünschten Kombination von Trägergas (Luft,O2,N2O, Edelgase) ausgesetzt werden, die für die jeweilige Fragestellung geeignet ist.
Wir zeigen hier, dass die SAA nützlich war, um unerwartete Veränderungen in der Widerstandsfähigkeit gegenüber Isofluran-Toxizität in der ND2360114 Fliegenschnur aufzudecken, und dass sich Standard-Laborfliegenschnüre in ihrer Reaktionsfähigkeit auf AP unterscheiden. Die Identifizierung dieser Ergebnisse war aufgrund der strengen Kontrolle der Versuchsbedingungen und des hohen Durchsatzes der SAA möglich.
Die SAA kann angepasst werden, um die Auswirkungen anderer flüchtiger organischer Verbindungen (VOCs) auf Insekten (z. B. Honigbienen) zu untersuchen. Für VOCs mit Dampfdrücken, die denen von flüchtigen Anästhetika nahe kommen (Isofluran: 240 mmHg bei 20 °C), könnten konventionelle Verdampfer verwendet werden, aber der Ausgang müsste kalibriert werden. Der kommerzielle Verdampfer für Desfluran ist beheizt und bietet möglicherweise zusätzliche Flexibilität.
The authors have nothing to disclose.
Wir danken Mark G. Perkins, Pearce Laboratory, Department of Anesthesiology, University of Wisconsin-Madison, für den Bau des SAA-Prototyps. Die Arbeit wird vom National Institute of General Medical Sciences (NIGMS) mit R01GM134107 und vom F&E-Fonds der Abteilung für Anästhesiologie der University of Wisconsin-Madison unterstützt.
Serial Anesthesia Array: | |||
5 mL Serological Pipettes | Fisher Scientific | 13-676-10C | Polystyrene, 5mL serological pipette |
50 mL Conical Tubes | Fisher Scientific | 1495949A | Polypropylene, 50 mL |
Cable Tie Mounting Pad | Grainger | 6EEE6 | 1.25 inch L x 1 inch W x 0.28 inch H |
Dispensing Syringe | Grainger | 5FVE0 | 10 mL with Luer-Lock Connection |
Fabric Mesh Netting | 1 mm mesh | ||
Flow Indicator | Grainger | 8RH52 | 5/16 to 1/2 inch connection size, paddle wheel style |
Tygon Tubing | Tygon | E-3603 | ID: 5/16, OD: 7/16, wall: 1/16 |
Wood Frame | 10 feet of 2 inch x 3/4 inch | ||
Zip Tie | >5inch | ||
Vaporizer Interface (Budget Alternative to Manifold): | |||
Dispensing Syringe | Grainger | 5FVE0 | 10 mL with Luer-Lock Connection |
Commercial Manifold and Vaporizers: | |||
1/4 inch Equal Barbed Y Connector | Somni Scientific | BF-9000 | |
1/8 inch NPT to 1/4 inch Barbed Elbow (Plastic) | Somni Scientific | BF-9004 | |
AIR 0-4 LPM Flowmeter w/ black knob | Somni Scientific | FP-4002 | |
Flowmeter auxiliary mounting bracket | Somni Scientific | NonInvPart | |
Medical Air, 1/8 inch NPT Male x DISS Male | Somni Scientific | GF-11012 | |
TT-2 Table Top Anesthesia System, built in dual diverter valve system. Includes 6' color coded tubing X2. (Vaporizer not Included) | Somni Scientific | TT-17000 | |
Tec 7 Isoflurane Vaporizer | GE Datex-Ohmeda | 1175-9101-000 | Agent-specific vaporizer (Isoflurane) |
Tec 7 Sevoflurane Vaporizer | GE Datex-Ohmeda | 1175-9301-000 | Agent-specific vaporizer (Sevoflurane) |