Summary

Pinces magnétiques à grande vitesse pour les mesures nanomécaniques sur des éléments sensibles à la force

Published: May 12, 2023
doi:

Summary

Ici, nous décrivons une pince magnétique à haute vitesse qui effectue des mesures nanomécaniques sur des biomolécules sensibles à la force à la vitesse maximale de 1,2 kHz. Nous introduisons son application aux épingles à cheveux à ADN et aux complexes SNARE en tant que systèmes modèles, mais elle sera également applicable à d’autres molécules impliquées dans des événements mécanobiologiques.

Abstract

Les pincettes magnétiques à molécule unique (MT) ont servi d’outils puissants pour interroger avec force les biomolécules, telles que les acides nucléiques et les protéines, et sont donc sur le point d’être utiles dans le domaine de la mécanobiologie. Étant donné que la méthode repose généralement sur le suivi des billes magnétiques basé sur l’image, la limite de vitesse dans l’enregistrement et l’analyse des images, ainsi que les fluctuations thermiques des billes, ont longtemps entravé son application dans l’observation de changements structurels petits et rapides dans les molécules cibles. Cet article décrit en détail les méthodes de construction et d’exploitation d’une installation de traduction automatique à haute résolution capable de résoudre la dynamique nanométrique en millisecondes des biomolécules et de leurs complexes. À titre d’exemples d’application, des expériences avec des épingles à cheveux à ADN et des complexes SNARE (machinerie de fusion membranaire) sont démontrées, en se concentrant sur la façon dont leurs états transitoires et transitions peuvent être détectés en présence de forces à l’échelle du piconewton. Nous nous attendons à ce que les MT à grande vitesse continuent de permettre des mesures nanomécaniques de haute précision sur des molécules qui détectent, transmettent et génèrent des forces dans les cellules, approfondissant ainsi notre compréhension moléculaire de la mécanobiologie.

Introduction

Les cellules détectent activement les stimuli mécaniques et y répondent. Ce faisant, de nombreuses biomolécules présentent des propriétés dépendantes de la force qui permettent des changements structurels dynamiques. Des exemples très appréciés incluent les canaux ioniques mécanosensibles et les éléments cytosquelettiques qui fournissent aux cellules des informations mécaniques clés de leur environnement.

En outre, les molécules qui présentent une nature unique de force porteuse peuvent également être considérées comme mécanosensibles dans un sens plus large. Par exemple, la formation locale et la fusion des duplex d’acides nucléiques, ainsi que des structures d’ordre supérieur telles que les quadriplex G, jouent un rôle crucial dans la réplication, la transcription, la recombinaison et, plus récemment, l’édition du génome. De plus, certaines protéines neuronales impliquées dans les communications synaptiques remplissent leurs fonctions en générant des forces physiques qui dépassent les niveaux des interactions intermoléculaires typiques. Quel que soit l’exemple étudié, l’étude de la nanomécanique des biomolécules impliquées avec une grande précision spatio-temporelle s’avérera très utile pour révéler les mécanismes moléculaires des processus mécanobiologiques associés 1,2,3.

Les méthodes de spectroscopie de force à molécule unique ont servi d’outils puissants pour examiner les propriétés mécaniques des biomolécules 2,4,5,6. Ils peuvent surveiller les changements structurels dans les acides nucléiques et les protéines en même temps que l’application de la force, examinant ainsi les propriétés dépendantes de la force. Deux configurations bien connues sont les pinces optiques et les pinces magnétiques (MT), qui utilisent des billes de la taille d’un micron pour manipuler les molécules 5,6,7,8. Dans ces plateformes, le polystyrène (pour les pinces optiques) ou les billes magnétiques (pour les MT) sont attachés à des molécules cibles (p. ex. acides nucléiques et protéines) via des « poignées » moléculaires, généralement constituées de courts fragments d’ADN double brin (ADNds). Les billes sont ensuite déplacées pour exercer une force et imagées pour suivre leurs emplacements qui signalent les changements structurels dans les molécules cibles. Les pinces optiques et magnétiques sont largement interchangeables dans leurs applications, mais il existe des différences importantes dans leurs approches du contrôle de la force. Les pincettes optiques sont intrinsèquement des instruments de serrage de position qui emprisonnent les billes en position, à cause desquelles la force appliquée fluctue lorsqu’une construction cible subit des changements de forme; L’augmentation de l’extension, par exemple en se dépliant, desserre l’attache et réduit la tension, et vice versa. Bien que la rétroaction active puisse être mise en œuvre pour contrôler la force dans les pincettes optiques, les MT en revanche fonctionnent naturellement comme un dispositif de serrage de force, tirant parti des forces magnétiques stables et éloignées des aimants permanents, qui peuvent également résister à la perturbation de l’environnement.

Malgré leur longue histoire et leur conception simple, les MT ont pris du retard par rapport aux pincettes optiques dans leurs applications pour les mesures de haute précision, en grande partie en raison des défis techniques liés au suivi rapide des talons. Récemment, cependant, plusieurs groupes ont mené conjointement une amélioration multidimensionnelle du matériel et des logiciels pour les instruments de traduction automatique 2,9,10,11,12,13,14,15,16,17,18,19 . Dans ce travail, nous présentons un exemple d’une telle configuration fonctionnant à 1,2 kHz et décrivons comment l’utiliser pour effectuer des mesures nanomécaniques sur des biomolécules sensibles à la force. En tant que systèmes modèles, nous utilisons des épingles à cheveux à ADN et des complexes SNARE neuronaux et examinons leurs changements structurels rapides dans le régime piconewton. Les épingles à cheveux ADN présentent des transitions simples à deux états dans une plage de force bien définie20,21, et servent donc de modèles de jouets pour vérifier les performances d’une pince à épiler. Comme les protéines SNARE s’assemblent en un complexe sensible aux forces qui entraîne la fusion membranaire22, elles ont également été étudiées de manière approfondie par spectroscopie de force à molécule unique 14,23,24,25. Les approches standard pour analyser les données et extraire des informations utiles sur la thermodynamique et la cinétique sont présentées. Nous espérons que cet article facilitera l’adoption de MT de haute précision dans les études mécanobiologiques et motivera les lecteurs à explorer leurs propres systèmes d’intérêt sensibles à la force.

Protocol

Tous les matériaux et équipements décrits dans ce protocole sont énumérés dans le tableau des matériaux. Le logiciel LabVIEW permettant de faire fonctionner la configuration de traduction automatique à grande vitesse décrite ci-dessous, ainsi que les scripts MATLAB permettant d’analyser des exemples de données, sont déposés sur GitHub (https://github.com/ShonLab/Magnetic-Tweezers) et accessibles au public. 1. Construction de l’appareil <p cla…

Representative Results

Calibrage de la forceLes résultats des deux méthodes de mesure de la force (variance de déplacement latéral des billes et analyse du spectre de puissance) différaient de 0 à 2 pN (figure 2G). Selon les résultats de la figure 2F, nous pouvons atteindre de manière fiable jusqu’à 30 pN avec des aimants en néodyme réguliers. Transitions à deux états d’une épingle à cheveux ADN de 8 pb</stron…

Discussion

Dans ce travail, nous avons introduit une configuration de spectroscopie de force à molécule unique qui peut observer les changements structurels des biomolécules avec une grande précision spatio-temporelle. La caméra CMOS haute vitesse utilisée acquiert 1 200 images s−1 à une résolution de 1 280 x 1 024, permettant un suivi des billes de 1,2 kHz. Cependant, la vitesse des mesures est actuellement limitée par le logiciel de suivi des perles, de sorte que le retour sur investissement est généraleme…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

Ce travail a été soutenu par la subvention de la Fondation nationale de recherche de Corée (NRF) financée par le gouvernement coréen (MSIT) (NRF-2022R1C1C1012176, NRF-2021R1A4A1031754 et NRF- 2021R1A6A1A10042944). S.-H.R. a été soutenu par la subvention NRF (2021R1C1C2009717).

Materials

Materials for construct synthesis
Agarose gel electrophoresis system Advance Mupid-2plus
DNA ladder Bioneer D-1037
nTaq polymerase Enzynomics P050A
PCR purification kit LaboPass CMR0112
PEGylated SMCC crosslinker / SM(PEG)2 ThermoFisher Scientific 22102 For SNARE–DNA coupling
Primer B Bioneer 5'-Biotin/TCGCCACCATCATTTCCA-3' For 5-kbp force calibration construct and DNA handles
Primer B_hp IDT 5'-Biotin/TTTTTTTTTTGTTCTCTATTT
TTTTAGAGAAC /AP site/ /AP site/ TCGCCACCATCATTTCCA-3'
For hairpin construct
Primer N Bioneer 5'-C6Amine/CATGTGGGTGACGCGAAA-3' For DNA handles
Primer Z Bioneer 5'-Azide/TCGCCACCATCATTTCCA-3' For DNA handles
Primer Z_5k Bioneer 5'-Azide/TTAGAGAGTATGGGTATATGACA
TCG-3'
For 5-kbp force calibration construct
Primer Z_hp Bioneer 5'-Azide/GTGGCAGCATGACACC-3' For hairpin construct
SYBR Safe DNA Gel Stain ThermoFisher Scientific S33102
λ-DNA Bioneer D-2510 Template strand for PCR
DNA sequences for SNARE proteins
6×His-tagged SNAP-25b (2-206; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctat
gagaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagcgg
aagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCACA
GCAGCGGCCTGGTGCCGCGC
GGCAGCCATACTAGCGGAGAT
ATCGCCGAGGACGCAGACAT
GCGCAATGAGCTGGAGGAGA
TGCAGAGGAGGGCTGACCAG
CTGGCTGATGAGTCCCTGGA
AAGCACCCGTCGCATGCTGC
AGCTGGTTGAAGAGAGTAAA
GATGCTGGCATCAGGACTTT
GGTTATGTTGGATGAGCAAG
GCGAACAACTGGAACGCATT
GAGGAAGGGATGGACCAAAT
CAATAAGGACATGAAAGAAG
CAGAAAAGAATTTGACGGAC
CTAGGAAAATTCGCCGGCCT
TGCCGTGGCCCCCGCCAAC
AAGCTTAAATCCAGTGATGC
TTACAAAAAAGCCTGGGGC
AATAATCAGGATGGAGTAGT
GGCCAGCCAGCCTGCCCG
TGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTG
GCTTCATCCGCAGGGTAAC
AAATGATGCCCGGGAAAAT
GAGATGGATGAGAACCTG
GAGCAGGTGAGCGGCATC
ATCGGAAACCTCCGCCAC
ATGGCTCTAGACATGGGCA
ATGAGATTGACACCCAGA
ATCGCCAGATCGACAGGA
TCATGGAGAAGGCTGATT
CCAACAAAACCAGAATTG
ATGAAGCCAACCAACGTG
CAACAAAGATGCTGGGAA
GTGGTTAAggatccgaattcgag
ctccgtcgacaagcttgcggccgcactc
gagcaccaccaccaccaccactgagat
ccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgag
caataactagcataaccccttggggcct
ctaaacgggtcttgaggggttttttgctga
aaggaggaactatatccggat
6×His-tagged VAMP2 (2-97, L32C/I97C; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcca
gggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGGCAGC
AGCCATCATCATCATCATCAC
AGCAGCGGCCTGGTGCCGC
GCGGCAGCCATATGGCAGAT
CTCTCGGCTACCGCTGCCAC
CGTCCCGCCTGCCGCCCCG
GCCGGCGAGGGTGGCCCCC
CTGCACCTCCTCCAAATCTTA
CCAGTAACAGGAGATGCCAG
CAGACCCAGGCCCAGGTGG
ATGAGGTGGTGGACATCATG
AGGGTGAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAG
CTATCGGAACTGGATGATCG
CGCAGATGCCCTCCAGGCA
GGGGCCTCCCAGTTTGAAA
CAAGTGCAGCCAAGCTCAA
GCGCAAATACTGGTGGAAA
AACCTCAAGATGATGTGCTA
Aggatccgaattcgagctccgtcg
acaagcttgcggccgcactcgagcaccacca
ccaccaccactgagatccggctgctaacaaa
gcccgaaaggaagctgagttggctgctgcca
ccgctgagcaataactagcataaccccttgg
ggcctctaaacgggtcttgaggggttttttg
ctgaaaggaggaactatatccggat
6×His-tagged ΔN-VAMP2 (49–96; capitalized) and Syntaxin-1A (191–267, I202C/I266C; capitalized) in pETDuet-1 homemade ggggaattgtgagcggataacaattcccctc
tagaaataattttgtttaactttaagaagga
gatataccATGGGCAGCAGCCATCA
TCATCATCATCACAGCAGCGG
CCTGGAAGTTCTGTTCCAGGG
GCCCGGTAATGTGGACAAGGT
CCTGGAGCGAGACCAGAAGCT
ATCGGAACTGGATGATCGCGC
AGATGCCCTCCAGGCAGGGGC
CTCCCAGTTTGAAACAAGTGC
AGCCAAGCTCAAGCGCAAATAC
TGGTGGAAAAACCTCAAGATGAT
GTAAgcggccgcataatgcttaagtcgaaca
gaaagtaatcgtattgtacacggccgcataa
tcgaaattaatacgactcactataggggaat
tgtgagcggataacaattccccatcttagta
tattagttaagtataagaaggagatatacat
ATGGCCCTCAGTGAGATCGAGA
CCAGGCACAGTGAGTGCATC
AAGTTGGAGAACAGCATCCG
GGAGCTACACGATATGTTCAT
GGACATGGCCATGCTGGTGG
AGAGCCAGGGGGAGATGATT
GACAGGATCGAGTACAATGTG
GAACACGCTGTGGACTACGTG
GAGAGGGCCGTGTCTGACACC
AAGAAGGCCGTCAAGTACCAG
AGCAAGGCACGCAGGAAGAA
GTGCATGATCTAActcgagtc
tggtaaagaaaccgctgctgcgaaatttgaa
cgccagcacatggactcgtctactagcgcag
cttaattaacctaggctgctgccaccgctga
gcaataactagcataaccccttggggcctct
aaacgggtcttgaggggttttttgctgaaag
gaggaactatatccggattggcgaatgggac
gcgccctgtagcggcgcattaagcgcggcgg
gtgtggtggttacgcgcagcgtgaccgctac
acttgccagcgccctagcgcccgctcctttc
gctttcttcccttcctttctcgccacgttcg
ccggctttccccgtcaagctctaaatcgggg
gctccctttagggttccgatttagtgcttta
cggcacctcgaccccaaaaaacttgattagg
gtgatggttcacgtagtgggccatcgccctg
atagacggtttttcgccctttgacgttggag
tccacgttctttaatagtggactcttgttcc
aaactggaacaacactcaaccctatctcggt
ctattcttttgatttataagggattttgccg
atttcggcctattggttaaaaaatgagctga
tttaacaaaaatttaacgcgaattttaacaa
aatattaacgtttacaatttctggcggcacg
atggcatgagattatcaaaaaggatcttcac
ctagatccttttaaattaaaaatgaagtttt
aaatcaatctaaagtatatatgagtaaactt
ggtctgacagttaccaatgcttaatcagtga
ggcacctatctcagcgatctgtctatttcgt
tcatccatagttgcctgactccccgtcgtgt
agataactacgatacgggagggcttaccatc
tggccccagtgctgcaatgataccgcgagac
ccacgctcaccggctccagatttatcagcaa
taaaccagccagccggaagggccgagcgca
gaagtggtcctgcaactttatccgcctccatc
cagtctattaattgttgccgggaagctagag
taagtagttcgccagttaatagtttgcgcaa
cgttgttgccattgctacaggcatcgtggtg
tcacgctcgtcgtttggtatggcttcattca
gctccggttcccaacgatcaaggcgagttac
atgatcccccatgttgtgcaaaaaagcggtt
agctccttcggtcctccgatcgttgtcagaa
gtaagttggccgcagtgttatcactcatggt
tatggcagcactgcataattctcttactgtc
atgccatccgtaagatgcttttctgtgactg
gtgagtactcaaccaagtcattctgagaata
gtgtatgcggcgaccgagttgctcttgcccg
gcgtcaatacgggataataccgcgccacata
gcagaactttaaaagtgctcatcattggaaa
acgttcttcggggcgaaaactctcaaggatc
ttaccgctgttgagatccagttcgatgtaac
ccactcgtgcacccaactgatcttcagcatc
ttttactttcaccagcgtttctgggtgagcaaa
aacaggaaggcaaaatgccgcaaaaaagg
gaataagggcgacacggaaatgttgaatact
catactcttcctttttcaatcatgattgaag
catttatcagggttattgtctcatgagcgga
tacatatttgaatgtatttagaaaaataaac
aaataggtcatgaccaaaatcccttaacgtg
agttttcgttccactgagcgtcagaccccgt
agaaaagatcaaaggatcttcttgagatcct
ttttttctgcgcgtaatctgctgcttgcaaa
caaaaaaaccaccgctaccagcggtggtttg
tttgccggatcaagagctaccaactcttttt
ccgaaggtaactggcttcagcagagcgcaga
taccaaatactgtccttctagtgtagccgta
gttaggccaccacttcaagaactctgtagca
ccgcctacatacctcgctctgctaatcctgt
taccagtggctgctgccagtggcgataagtc
gtgtcttaccgggttggactcaagacgatag
ttaccggataaggcgcagcggtcgggctgaa
cggggggttcgtgcacacagcccagcttgga
gcgaacgacctacaccgaactgagataccta
cagcgtgagctatgagaaagcgccacgcttccc
gaagggagaaaggcggacaggtatccggta
agcggcagggtcggaacaggagagcgcac
gagggagcttccagggggaaacgcctggtatc
tttatagtcctgtcgggtttcgccacctctg
acttgagcgtcgatttttgtgatgctcgtca
ggggggcggagcctatggaaaaacgccagc
aacgcggcctttttacggttcctggccttttg
ctggccttttgctcacatgttctttcctgcg
ttatcccctgattctgtggataaccgtatta
ccgcctttgagtgagctgataccgctcgccgc
agccgaacgaccgagcgcagcgagtcagtg
agcgaggaagcggaagagcgcctgatgcgg
tattttctccttacgcatctgtgcggtatttc
acaccgcatatatggtgcactctcagtacaa
tctgctctgatgccgcatagttaagccagta
tacactccgctatcgctacgtgactgggtca
tggctgcgccccgacacccgccaacacccgc
tgacgcgccctgacgggcttgtctgctcccg
gcatccgcttacagacaagctgtgaccgtct
ccgggagctgcatgtgtcagaggttttcacc
gtcatcaccgaaacgcgcgaggcagctgcgg
taaagctcatcagcgtggtcgtgaagcgatt
cacagatgtctgcctgttcatccgcgtccag
ctcgttgagtttctccagaagcgttaatgtc
tggcttctgataaagcgggccatgttaaggg
cggttttttcctgtttggtcactgatgcctc
cgtgtaagggggatttctgttcatgggggta
atgataccgatgaaacgagagaggatgctca
cgatacgggttactgatgatgaacatgcccg
gttactggaacgttgtgagggtaaacaactg
gcggtatggatgcggcgggaccagagaaaaa
tcactcagggtcaatgccagcgcttcgttaa
tacagatgtaggtgttccacagggtagccag
cagcatcctgcgatgcagatccggaacataa
tggtgcagggcgctgacttccgcgtttccag
actttacgaaacacggaaaccgaagaccatt
catgttgttgctcaggtcgcagacgttttgc
agcagcagtcgcttcacgttcgctcgcgtat
cggtgattcattctgctaaccagtaaggcaa
ccccgccagcctagccgggtcctcaacgaca
ggagcacgatcatgctagtcatgccccgcgc
ccaccggaaggagctgactgggttgaaggct
ctcaagggcatcggtcgagatcccggtgcct
aatgagtgagctaacttacattaattgcgtt
gcgctcactgcccgctttccagtcgggaaac
ctgtcgtgccagctgcattaatgaatcggcc
aacgcgcggggagaggcggtttgcgtattgg
gcgccagggtggtttttcttttcaccagtga
gacgggcaacagctgattgcccttcaccgcc
tggccctgagagagttgcagcaagcggtcca
cgctggtttgccccagcaggcgaaaatcctg
tttgatggtggttaacggcgggatataacat
gagctgtcttcggtatcgtcgtatcccacta
ccgagatgtccgcaccaacgcgcagcccgga
ctcggtaatggcgcgcattgcgcccagcgcc
atctgatcgttggcaaccagcatcgcagtgg
gaacgatgccctcattcagcatttgcatggt
ttgttgaaaaccggacatggcactccagtcg
ccttcccgttccgctatcggctgaatttgat
tgcgagtgagatatttatgccagccagccag
acgcagacgcgccgagacagaacttaatggg
cccgctaacagcgcgatttgctggtgaccca
atgcgaccagatgctccacgcccagtcgcgt
accgtcttcatgggagaaaataatactgttg
atgggtgtctggtcagagacatcaagaaata
acgccggaacattagtgcaggcagcttccac
agcaatggcatcctggtcatccagcggatag
ttaatgatcagcccactgacgcgttgcgcga
gaagattgtgcaccgccgctttacaggcttc
gacgccgcttcgttctaccatcgacaccacc
acgctggcacccagttgatcggcgcgagatt
taatcgccgcgacaatttgcgacggcgcgtg
cagggccagactggaggtggcaacgccaatc
agcaacgactgtttgcccgccagttgttgtg
ccacgcggttgggaatgtaattcagctccgc
catcgccgcttccactttttcccgcgttttc
gcagaaacgtggctggcctggttcaccacgc
gggaaacggtctgataagagacaccggcata
ctctgcgacatcgtataacgttactggtttc
acattcaccaccctgaattgactctcttccg
ggcgctatcatgccataccgcgaaaggtttt
gcgccattcgatggtgtccgggatctcgacg
ctctcccttatgcgactcctgcattaggaag
cagcccagtagtaggttgaggccgttgagca
ccgccgccgcaaggaatggtgcatgcaagga
gatggcgcccaacagtcccccggccacgggg
cctgccaccatacccacgccgaaacaagcgc
tcatgagcccgaagtggcgagcccgatcttc
cccatcggtgatgtcggcgatataggcgcca
gcaaccgcacctgtggcgccggtgatgccgg
ccacgatgcgtccggcgtagaggatcgagat
cgatctcgatcccgcgaaattaatacgactc
actata
SNAP-25b (1–206, all C to A; capitalized) in pET28a homemade tggcgaatgggacgcgccctgtagcggcgca
ttaagcgcggcgggtgtggtggttacgcgca
gcgtgaccgctacacttgccagcgccctagc
gcccgctcctttcgctttcttcccttccttt
ctcgccacgttcgccggctttccccgtcaag
ctctaaatcgggggctccctttagggttccg
atttagtgctttacggcacctcgaccccaaa
aaacttgattagggtgatggttcacgtagtg
ggccatcgccctgatagacggtttttcgccc
tttgacgttggagtccacgttctttaatagt
ggactcttgttccaaactggaacaacactca
accctatctcggtctattcttttgatttata
agggattttgccgatttcggcctattggtta
aaaaatgagctgatttaacaaaaatttaacg
cgaattttaacaaaatattaacgtttacaat
ttcaggtggcacttttcggggaaatgtgcgc
ggaacccctatttgtttatttttctaaatac
attcaaatatgtatccgctcatgaattaatt
cttagaaaaactcatcgagcatcaaatgaaa
ctgcaatttattcatatcaggattatcaata
ccatatttttgaaaaagccgtttctgtaatg
aaggagaaaactcaccgaggcagttccatag
gatggcaagatcctggtatcggtctgcgatt
ccgactcgtccaacatcaatacaacctatta
atttcccctcgtcaaaaataaggttatcaag
tgagaaatcaccatgagtgacgactgaatcc
ggtgagaatggcaaaagtttatgcatttctt
tccagacttgttcaacaggccagccattacg
ctcgtcatcaaaatcactcgcatcaaccaaa
ccgttattcattcgtgattgcgcctgagcga
gacgaaatacgcgatcgctgttaaaaggaca
attacaaacaggaatcgaatgcaaccggcgc
aggaacactgccagcgcatcaacaatatttt
cacctgaatcaggatattcttctaatacctg
gaatgctgttttcccggggatcgcagtggtg
agtaaccatgcatcatcaggagtacggataa
aatgcttgatggtcggaagaggcataaattc
cgtcagccagtttagtctgaccatctcatct
gtaacatcattggcaacgctacctttgccat
gtttcagaaacaactctggcgcatcgggctt
cccatacaatcgatagattgtcgcacctgat
tgcccgacattatcgcgagcccatttatacc
catataaatcagcatccatgttggaatttaa
tcgcggcctagagcaagacgtttcccgttga
atatggctcataacaccccttgtattactgt
ttatgtaagcagacagttttattgttcatga
ccaaaatcccttaacgtgagttttcgttcca
ctgagcgtcagaccccgtagaaaagatcaaa
ggatcttcttgagatcctttttttctgcgcg
taatctgctgcttgcaaacaaaaaaaccacc
gctaccagcggtggtttgtttgccggatcaa
gagctaccaactctttttccgaaggtaactg
gcttcagcagagcgcagataccaaatactgt
ccttctagtgtagccgtagttaggccaccac
ttcaagaactctgtagcaccgcctacatacc
tcgctctgctaatcctgttaccagtggctgc
tgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataagg
cgcagcggtcgggctgaacggggggttcgtg
cacacagcccagcttggagcgaacgacctac
accgaactgagatacctacagcgtgagctatg
agaaagcgccacgcttcccgaagggagaaa
ggcggacaggtatccggtaagcggcagggtc
ggaacaggagagcgcacgagggagcttcc
agggggaaacgcctggtatctttatagtcctgt
cgggtttcgccacctctgacttgagcgtcga
tttttgtgatgctcgtcaggggggcggagcc
tatggaaaaacgccagcaacgcggccttttt
acggttcctggccttttgctggccttttgct
cacatgttctttcctgcgttatcccctgatt
ctgtggataaccgtattaccgcctttgagtg
agctgataccgctcgccgcagccgaacgacc
gagcgcagcgagtcagtgagcgaggaagc
ggaagagcgcctgatgcggtattttctccttac
gcatctgtgcggtatttcacaccgcatatat
ggtgcactctcagtacaatctgctctgatgc
cgcatagttaagccagtatacactccgctat
cgctacgtgactgggtcatggctgcgccccg
acacccgccaacacccgctgacgcgccctga
cgggcttgtctgctcccggcatccgcttaca
gacaagctgtgaccgtctccgggagctgcat
gtgtcagaggttttcaccgtcatcaccgaaa
cgcgcgaggcagctgcggtaaagctcatcag
cgtggtcgtgaagcgattcacagatgtctgc
ctgttcatccgcgtccagctcgttgagtttc
tccagaagcgttaatgtctggcttctgataa
agcgggccatgttaagggcggttttttcctg
tttggtcactgatgcctccgtgtaaggggga
tttctgttcatgggggtaatgataccgatga
aacgagagaggatgctcacgatacgggttac
tgatgatgaacatgcccggttactggaacgt
tgtgagggtaaacaactggcggtatggatgc
ggcgggaccagagaaaaatcactcagggtc
aatgccagcgcttcgttaatacagatgtaggt
gttccacagggtagccagcagcatcctgcga
tgcagatccggaacataatggtgcagggcgc
tgacttccgcgtttccagactttacgaaaca
cggaaaccgaagaccattcatgttgttgctc
aggtcgcagacgttttgcagcagcagtcgct
tcacgttcgctcgcgtatcggtgattcattc
tgctaaccagtaaggcaaccccgccagccta
gccgggtcctcaacgacaggagcacgatcat
gcgcacccgtggggccgccatgccggcgata
atggcctgcttctcgccgaaacgtttggtgg
cgggaccagtgacgaaggcttgagcgagggc
gtgcaagattccgaataccgcaagcgacagg
ccgatcatcgtcgcgctccagcgaaagcggt
cctcgccgaaaatgacccagagcgctgccgg
cacctgtcctacgagttgcatgataaagaag
acagtcataagtgcggcgacgatagtcatgc
cccgcgcccaccggaaggagctgactgggtt
gaaggctctcaagggcatcggtcgagatccc
ggtgcctaatgagtgagctaacttacattaa
ttgcgttgcgctcactgcccgctttccagtc
gggaaacctgtcgtgccagctgcattaatga
atcggccaacgcgcggggagaggcggtttgc
gtattgggcgccagggtggtttttcttttca
ccagtgagacgggcaacagctgattgccctt
caccgcctggccctgagagagttgcagcaag
cggtccacgctggtttgccccagcaggcgaa
aatcctgtttgatggtggttaacggcgggat
ataacatgagctgtcttcggtatcgtcgtat
cccactaccgagatatccgcaccaacgcgca
gcccggactcggtaatggcgcgcattgcgcc
cagcgccatctgatcgttggcaaccagcatc
gcagtgggaacgatgccctcattcagcattt
gcatggtttgttgaaaaccggacatggcact
ccagtcgccttcccgttccgctatcggctga
atttgattgcgagtgagatatttatgccagc
cagccagacgcagacgcgccgagacagaa
cttaatgggcccgctaacagcgcgatttgctgg
tgacccaatgcgaccagatgctccacgccca
gtcgcgtaccgtcttcatgggagaaaataat
actgttgatgggtgtctggtcagagacatca
agaaataacgccggaacattagtgcaggcag
cttccacagcaatggcatcctggtcatccag
cggatagttaatgatcagcccactgacgcgt
tgcgcgagaagattgtgcaccgccgctttac
aggcttcgacgccgcttcgttctaccatcga
caccaccacgctggcacccagttgatcggcg
cgagatttaatcgccgcgacaatttgcgacg
gcgcgtgcagggccagactggaggtggcaac
gccaatcagcaacgactgtttgcccgccagt
tgttgtgccacgcggttgggaatgtaattca
gctccgccatcgccgcttccactttttcccg
cgttttcgcagaaacgtggctggcctggttc
accacgcgggaaacggtctgataagagacac
cggcatactctgcgacatcgtataacgttac
tggtttcacattcaccaccctgaattgactc
tcttccgggcgctatcatgccataccgcgaa
aggttttgcgccattcgatggtgtccgggat
ctcgacgctctcccttatgcgactcctgcat
taggaagcagcccagtagtaggttgaggccg
ttgagcaccgccgccgcaaggaatggtgcat
gcaaggagatggcgcccaacagtcccccggc
cacggggcctgccaccatacccacgccgaaa
caagcgctcatgagcccgaagtggcgagccc
gatcttccccatcggtgatgtcggcgatata
ggcgccagcaaccgcacctgtggcgccggtg
atgccggccacgatgcgtccggcgtagagga
tcgagatctcgatcccgcgaaattaatacga
ctcactataggggaattgtgagcggataaca
attcccctctagaaataattttgtttaactt
taagaaggagatataccATGGCCGA
GGACGCAGACATGCGCAATG
AGCTGGAGGAGATGCAGAGG
AGGGCTGACCAGCTGGCTGA
TGAGTCCCTGGAAAGCACCC
GTCGCATGCTGCAGCTGGTT
GAAGAGAGTAAAGATGCTGG
CATCAGGACTTTGGTTATGTT
GGATGAGCAAGGCGAACAAC
TGGAACGCATTGAGGAAGGG
ATGGACCAAATCAATAAGGAC
ATGAAAGAAGCAGAAAAGAAT
TTGACGGACCTAGGAAAATTC
GCCGGCCTTGCCGTGGCCCC
CGCCAACAAGCTTAAATCCAG
TGATGCTTACAAAAAAGCCTG
GGGCAATAATCAGGATGGAGT
AGTGGCCAGCCAGCCTGCCC
GTGTGGTGGATGAACGGGAG
CAGATGGCCATCAGTGGTGGC
TTCATCCGCAGGGTAACAAAT
GATGCCCGGGAAAATGAGATG
GATGAGAACCTGGAGCAGGT
GAGCGGCATCATCGGAAACCT
CCGCCACATGGCTCTAGACAT
GGGCAATGAGATTGACACCCA
GAATCGCCAGATCGACAGGAT
CATGGAGAAGGCTGATTCCAA
CAAAACCAGAATTGATGAAGC
CAACCAACGTGCAACAAAGAT
GCTGGGAAGTGGTTAA
ctcgagcaccaccaccaccaccactgag
atccggctgctaacaaagcccgaaagga
agctgagttggctgctgccaccgctgagc
aataactagcataaccccttggggcctc
taaacgggtcttgaggggttttttgctgaa
aggaggaactatatccggat
Materials for protein purificaiton
2-Mercaptoethanol SIGMA M3148-25ML
Agar LPS Solution AGA500
Ampicillin, Sodium salt PLS AC1043-005-00
Chloramphenicol PLS CR1023-050-00
Competent cells (E. coli) Novagen 70956 Rosetta(DE3)pLysS
Glycerol SIGMA G5516-500ML
HEPES SIGMA H4034-100G
Hydrochloric acid / HCl SIGMA 320331-500ML
Imidazole SIGMA I2399-100G
Isopropyl β-D-1-thiogalactopyranoside / IPTG SIGMA 10724815001
Kanamycin Sulfate PLS KC1001-005-02
Luria-Bertani (LB) Broth LPS Solution LB-05
Ni-NTA resin Qiagen 30210
PD MiniTrap G-25 (desalting column) Cytiva GE28-9180-07 For instructions, see: https://www.cytivalifesciences.com/en/us/shop/chromatography/prepacked-columns/desalting-and-buffer-exchange/pd-minitrap-desalting-columns-with-sephadex-g-25-resin-p-06174
Phenylmethylsulfonyl fluoride / PMSF ThermoFisher Scientific 36978
Plasmids for SNARE proteins cloned in house N/A Available upon request
Protease inhibitor cocktail genDEPOT P3100
Sodium chloride SIGMA S5886-500G
Sodium phosphate dibasic / Na2HPO4 SIGMA S7907-100G
Sodium phosphate monobasic / NaH2PO4 SIGMA S3139-250G
Tris(2-carboxyethyl)phosphine / TCEP SIGMA C4706-2G
Trizma base SIGMA T1503-250G
Materials for sample assembly
Biotin-PEG-SVA LAYSAN BIO BIO-PEG-SVA-5K-100MG & MPEG-SVA-5K-1g For PEGylation
Dibenzocyclooctyne-amine / DBCO-NH2 SIGMA 761540-10MG For bead coating
Double-sided tape 3M 136 For flow cell assembly
Epoxy glue DEVCON S-208 For flow cell assembly
Glass coverslip for bottom surface VWR 48393-251 Rectangular, 60×24 mm, #1.5
Glass coverslip for top surface VWR 48393-241 Rectangular, 50×24 mm, #1.5
Magnetic bead ThermoFisher Scientific 14301 Dynabeads M-270 Epoxy, 2.8 μm
mPEG-SVA LAYSAN BIO mPEG-SVA 1g For PEGylation
N,N-Dimethylformamide / DMF SIGMA D4551-250ML For bead coating
N-[3-(trimethoxysilyl)propyl]ethylenediamine SIGMA 104884-100ML For PEGylation
Neutravidin ThermoFisher Scientific 31000 For sample tethering
Phosphate buffered saline / PBS, pH 7.2 PLS PR2007-100-00
Plastic syringe Norm-ject A5 5 ml, luer tip
Polyethylene Tubing SCI BB31695-PE/4 PE-60
Reference bead SPHEROTECH SVP-30-5 Streptavidin-coated Polystyrene Particles; 3.0-3.4 µm
Syringe needle Kovax 21G-1 1/4'' 21 G
Syringe pump KD SCIENTIFIC 788210
Equipment for magnetic tweezer instrument
1-axis motorized microtranslation stage PI M-126.PD1 For vertical positioning of magnets
2-axis manual translation stage ST1 LEE400 For alignment of magnets to the optical axis
Acrylic holder for magnets DaiKwang Precision custum order Drawing available upon request
Frame grabber Active Silicon AS-FBD-4XCXP6-2PE8
High-speed CMOS camera Mikrotron EoSens 3CXP
Inverted microscope Olympus IX73P2F-1-2
Neodymium magnets LG magnet ND 10x10x12t Dimension: 10 mm × 10 mm × 12 mm; two needed
Objective lens Olympus UPLXAPO100XO Oil-immersion, NA 1.45
Objective lens nanopositioner Mad City Labs Nano-F100S
Rotation stepper motor AUTONICS A3K-S545W For rotating magnets
Superluminescent diode QPHOTONICS QSDM-680-2 680 nm
Software
LabVIEW National Instruments v20.0f1
MATLAB MathWorks v2021a

Referencias

  1. Le, S., Liu, R., Lim, C. T., Yan, J. Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods. 94, 13-18 (2016).
  2. Choi, H. -. K., Kim, H. G., Shon, M. J., Yoon, T. -. Y. High-resolution single-molecule magnetic tweezers. Annual Review of Biochemistry. 91 (1), 33-59 (2022).
  3. Yang, T., Park, C., Rah, S. -. H., Shon, M. J. Nano-precision tweezers for mechanosensitive proteins and beyond. Molecules and Cells. 45 (1), 16-25 (2022).
  4. Neuman, K. C., Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods. 5 (6), 491-505 (2008).
  5. De Vlaminck, I., Dekker, C. Recent advances in magnetic tweezers. Annual Review of Biophysics. 41 (1), 453-472 (2012).
  6. Bustamante, C. J., Chemla, Y. R., Liu, S., Wang, M. D. Optical tweezers in single-molecule biophysics. Nature Reviews Methods Primers. 1, 25 (2021).
  7. Gosse, C., Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophysical Journal. 82 (6), 3314-3329 (2002).
  8. Smith, S. B., Finzi, L., Bustamante, C. Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science. 258 (5085), 1122-1126 (1992).
  9. Lansdorp, B. M., Tabrizi, S. J., Dittmore, A., Saleh, O. A. A high-speed magnetic tweezer beyond 10,000 frames per second. Review of Scientific Instruments. 84 (4), 044301 (2013).
  10. Cnossen, J. P., Dulin, D., Dekker, N. H. An optimized software framework for real-time, high-throughput tracking of spherical beads. Review of Scientific Instruments. 85 (10), 103712 (2014).
  11. Dulin, D., et al. High spatiotemporal-resolution magnetic tweezers: calibration and applications for DNA dynamics. Biophysical Journal. 109 (10), 2113-2125 (2015).
  12. Huhle, A., et al. Camera-based three-dimensional real-time particle tracking at kHz rates and Ångström accuracy. Nature Communications. 6 (1), 5885 (2015).
  13. Popa, I., et al. A HaloTag anchored ruler for week-long studies of protein dynamics. Journal of the American Chemical Society. 138 (33), 10546-10553 (2016).
  14. Shon, M. J., Kim, H., Yoon, T. -. Y. Focused clamping of a single neuronal SNARE complex by complexin under high mechanical tension. Nature Communications. 9 (1), 3639 (2018).
  15. Tapia-Rojo, R., Eckels, E. C., Fernández, J. M. Ephemeral states in protein folding under force captured with a magnetic tweezers design. Proceedings of the National Academy of Sciences. 116 (16), 7873-7878 (2019).
  16. Löf, A., et al. Multiplexed protein force spectroscopy reveals equilibrium protein folding dynamics and the low-force response of von Willebrand factor. Proceedings of the National Academy of Sciences. 116 (38), 18798-18807 (2019).
  17. Tapia-Rojo, R., Alonso-Caballero, A., Fernandez, J. M. Direct observation of a coil-to-helix contraction triggered by vinculin binding to talin. Science Advances. 6 (21), (2020).
  18. Rieu, M., et al. Parallel, linear, and subnanometric 3D tracking of microparticles with Stereo Darkfield Interferometry. Science Advances. 7 (6), (2021).
  19. Rieu, M., Valle-Orero, J., Ducos, B., Allemand, J. -. F., Croquette, V. Single-molecule kinetic locking allows fluorescence-free quantification of protein/nucleic-acid binding. Communications Biology. 4 (1), 1083 (2021).
  20. Woodside, M. T., et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proceedings of the National Academy of Sciences. 103 (16), 6190-6195 (2006).
  21. Camunas-Soler, J., Ribezzi-Crivellari, M., Ritort, F. Elastic properties of nucleic acids by single-molecule force spectroscopy. Annual Review of Biophysics. 45 (1), 65-84 (2016).
  22. Südhof, T. C., Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science. 323 (5913), 474-477 (2009).
  23. Gao, Y., et al. Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science. 337 (6100), 1340-1343 (2012).
  24. Zorman, S., et al. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLife. 3, e03348 (2014).
  25. Zhang, Y., Hughson, F. M. Chaperoning SNARE folding and assembly. Annual Review of Biochemistry. 90 (1), 581-603 (2021).
  26. Vilfan, I. D., Lipfert, J., Koster, D. A., Lemay, S. G., Dekker, N. H. Magnetic tweezers for single-molecule experiments. Handbook of Single-Molecule Biophysics. , 371-395 (2009).
  27. You, H., Le, S., Chen, H., Qin, L., Yan, J. Single-molecule manipulation of G-quadruplexes by magnetic tweezers. Journal of Visualized Experiments. (127), e56328 (2017).
  28. Lipfert, J., Hao, X., Dekker, N. H. Quantitative modeling and optimization of magnetic tweezers. Biophysical Journal. 96 (12), 5040-5049 (2009).
  29. Dulin, D., Barland, S., Hachair, X., Pedaci, F. Efficient illumination for microsecond tracking microscopy. PLoS One. 9 (9), e107335 (2014).
  30. Klaue, D., Seidel, R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Physical Review Letters. 102 (2), 028302 (2009).
  31. Shon, M. J., Rah, S. -. H., Yoon, T. -. Y. Submicrometer elasticity of double-stranded DNA revealed by precision force-extension measurements with magnetic tweezers. Science Advances. 5 (6), 1697 (2019).
  32. Czerwinski, F., Richardson, A. C., Oddershede, L. B. Quantifying noise in optical tweezers by Allan variance. Optics Express. 17 (15), 13255-13269 (2009).
  33. Lansdorp, B. M., Saleh, O. A. Power spectrum and Allan variance methods for calibrating single-molecule video-tracking instruments. Review of Scientific Instruments. 83 (2), 025115 (2012).
  34. Ostrofet, E., Papini, F. S., Dulin, D. High spatiotemporal resolution data from a custom magnetic tweezers instrument. Data in Brief. 30, 105397 (2020).
  35. Yu, Z., et al. A force calibration standard for magnetic tweezers. Review of Scientific Instruments. 85 (12), 123114 (2014).
  36. Strick, T. R., Allemand, J. -. F., Bensimon, D., Bensimon, A., Croquette, V. The elasticity of a single supercoiled DNA molecule. Science. 271 (5257), 1835-1837 (1996).
  37. Daldrop, P., Brutzer, H., Huhle, A., Kauert, D. J., Seidel, R. Extending the range for force calibration in magnetic tweezers. Biophysical Journal. 108 (10), 2550-2561 (2015).
  38. te Velthuis, A. J. W., Kerssemakers, J. W. J., Lipfert, J., Dekker, N. H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophysical Journal. 99 (4), 1292-1302 (2010).
  39. Ostrofet, E., Papini, F. S., Dulin, D. Correction-free force calibration for magnetic tweezers experiments. Scientific Reports. 8 (1), 15920 (2018).
  40. Seol, Y., Li, J., Nelson, P. C., Perkins, T. T., Betterton, M. D. Elasticity of short DNA molecules: theory and experiment for contour lengths of 0.6-7 µm. Biophysical Journal. 93 (12), 4360-4373 (2007).
  41. Burnham, D. R., Vlaminck, I. D., Henighan, T., Dekker, C. Skewed Brownian fluctuations in single-molecule magnetic tweezers. PLoS One. 9 (9), 108271 (2014).
  42. Paul, T., Myong, S. Protocol for generation and regeneration of PEG-passivated slides for single-molecule measurements. STAR Protocols. 3 (1), 101152 (2022).
  43. Lee, H. -. W., et al. Profiling of protein-protein interactions via single-molecule techniques predicts the dependence of cancers on growth-factor receptors. Nature Biomedical Engineering. 2 (4), 239-253 (2018).
  44. Cheezum, M. K., Walker, W. F., Guilford, W. H. Quantitative comparison of algorithms for tracking single fluorescent particles. Biophysical Journal. 81 (4), 2378-2388 (2001).
  45. Parthasarathy, R. Rapid, accurate particle tracking by calculation of radial symmetry centers. Nature Methods. 9 (7), 724-726 (2012).
  46. Woodside, M. T., Block, S. M. Reconstructing folding energy landscapes by single-molecule force spectroscopy. Annual Review of Biophysics. 43 (1), 19-39 (2014).
  47. Evans, E., Ritchie, K. Dynamic strength of molecular adhesion bonds. Biophysical Journal. 72 (4), 1541-1555 (1997).
  48. Zhang, Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers. Protein Science. 26 (7), 1252-1265 (2017).
  49. Chen, H., et al. Improved high-force magnetic tweezers for stretching and refolding of proteins and short DNA. Biophysical Journal. 100 (2), 517-523 (2011).
  50. Cho, S., et al. Tension exerted on cells by magnetic nanoparticles regulates differentiation of human mesenchymal stem cells. Biomaterials Advances. 139, 213028 (2022).
  51. Shon, M. J., Cohen, A. E. Nano-mechanical measurements of protein-DNA interactions with a silicon nitride pulley. Nucleic Acids Research. 44 (1), 7 (2016).
  52. Cheng, Y. Single-particle cryo-EM-How did it get here and where will it go. Science. 361 (6405), 876-880 (2018).
  53. Jumper, J., et al. Highly accurate protein structure prediction with AlphaFold. Nature. 596 (7873), 583-589 (2021).
  54. Neupane, K., et al. Direct observation of transition paths during the folding of proteins and nucleic acids. Science. 352 (6282), 239-242 (2016).
  55. Choi, H. -. K., et al. Watching helical membrane proteins fold reveals a common N-to-C-terminal folding pathway. Science. 366 (6469), 1150-1156 (2019).
  56. Kim, C., et al. Extreme parsimony in ATP consumption by 20S complexes in the global disassembly of single SNARE complexes. Nature Communications. 12 (1), 3206 (2021).

Play Video

Citar este artículo
Park, C., Yang, T., Rah, S., Kim, H. G., Yoon, T., Shon, M. J. High-Speed Magnetic Tweezers for Nanomechanical Measurements on Force-Sensitive Elements. J. Vis. Exp. (195), e65137, doi:10.3791/65137 (2023).

View Video