Das Nasenepithel ist die primäre Barrierestelle, auf die alle respiratorischen Krankheitserreger treffen. In dieser Arbeit skizzieren wir Methoden zur Verwendung von primären nasalen Epithelzellen, die als Luft-Flüssigkeits-Grenzflächenkulturen (ALI) gezüchtet wurden, um menschliche Coronavirus-Wirt-Interaktionen in einem physiologisch relevanten System zu charakterisieren.
Drei hochpathogene humane Coronaviren (HCoVs) – SARS-CoV (2002), MERS-CoV (2012) und SARS-CoV-2 (2019) – sind aufgetaucht und haben in den letzten 20 Jahren erhebliche Krisen im Bereich der öffentlichen Gesundheit verursacht. Vier weitere HCoVs verursachen jedes Jahr einen signifikanten Anteil an Erkältungsfällen (HCoV-NL63, -229E, -OC43 und -HKU1), was die Bedeutung der Untersuchung dieser Viren in physiologisch relevanten Systemen unterstreicht. HCoVs dringen in die Atemwege ein und infizieren sich im Nasenepithel, dem primären Ort, an dem alle respiratorischen Krankheitserreger auftreten. Wir verwenden ein primäres nasales Epithelkultursystem, bei dem von Patienten stammende Nasenproben an einer Luft-Flüssigkeits-Grenzfläche (ALI) gezüchtet werden, um Wirt-Pathogen-Interaktionen an diesem wichtigen Sentinel-Ort zu untersuchen. Diese Kulturen rekapitulieren viele Merkmale der In-vivo-Atemwege , einschließlich der vorhandenen Zelltypen, der Ziliarfunktion und der Schleimproduktion. Wir beschreiben Methoden zur Charakterisierung der viralen Replikation, des Wirtszelltropismus, der virusinduzierten Zytotoxizität und der Induktion des angeborenen Immunsystems in nasalen ALI-Kulturen nach HCoV-Infektion, wobei wir aktuelle Arbeiten zum Vergleich von letalen und saisonalen HCoVs als Beispiel verwenden1. Ein besseres Verständnis der Wirt-Pathogen-Interaktionen in der Nase hat das Potenzial, neue Angriffspunkte für antivirale Therapeutika gegen HCoVs und andere Atemwegsviren zu liefern, die wahrscheinlich in Zukunft auftauchen werden.
Bisher wurden sieben humane Coronaviren (HCoVs) identifiziert, die eine Reihe von Atemwegserkrankungen verursachen2. Die häufigen oder saisonalen HCoVs (HCoV-NL63, -229E, -OC43 und -HKU1) sind typischerweise mit der Pathologie der oberen Atemwege assoziiert und verursachen jährlich schätzungsweise 10 % bis 30 % der Erkältungsfälle. Obwohl dies der typische klinische Phänotyp ist, der mit den häufigen HCoVs assoziiert ist, können diese Viren in Risikopopulationen, einschließlich Kindern, älteren Erwachsenen und immungeschwächten Personen, signifikantere Erkrankungen der unteren Atemwege verursachen 3,4. In den letzten 20 Jahren sind drei pathogene HCoVs aufgetaucht und haben erhebliche Notlagen im Bereich der öffentlichen Gesundheit verursacht, darunter das schwere akute respiratorische Syndrom (SARS)-CoV, das Atemwegssyndrom des Nahen Ostens (MERS)-CoV und SARS-CoV-2. Tödliche HCoVs sind mit schwereren Atemwegserkrankungen assoziiert, was durch die Sterblichkeitsrate von >34 % im Zusammenhang mit MERS-CoV-Fällen (894 Todesfälle bei über 2.500 Fällen seit dem Auftreten im Jahr 2012) deutlich wird5,6. Es ist wichtig zu beachten, dass die tödlichen HCoVs auch eine Reihe von Atemwegserkrankungen verursachen, von asymptomatischen Infektionen bis hin zu tödlichen Lungenentzündungen, wie bei der anhaltenden COVID-19-Pandemiezu sehen ist 7.
HCoVs gelangen wie andere respiratorische Erreger in die Atemwege und etablieren eine produktive Infektion im Nasenepithel8. Es wird angenommen, dass die Ausbreitung in die unteren Atemwege mit der Aspiration von der Mund-/Nasenhöhle in die Lunge verbunden ist, wo HCoVs eine bedeutendere Pathologie der unteren Atemwege verursachen 9,10,11. Somit dient die Nase als Ausgangspforte für den Viruseintritt und ist mit ihrer robusten mukoziliären Clearance-Maschinerie und einzigartigen angeborenen Immunmechanismen, die darauf abzielen, eine weitere Ausbreitung des Virus in die unteren Atemwege zu verhindern, die primäre Barriere für Infektionen12,13. Zum Beispiel wurde berichtet, dass Nasenepithelzellen überdurchschnittlich hohe basale Konzentrationen von antiviralen Interferonen und Interferon-stimulierten Genen exprimieren, was darauf hindeutet, dass Nasenzellen auf frühe Reaktionen auf Atemwegsviren vorbereitet sein könnten14,15,16.
Wir haben zuvor von Patienten stammende primäre Nasenepithelzellen, die an einer Luft-Flüssigkeits-Grenzfläche (ALI) gezüchtet wurden, verwendet, um HCoV-Wirt-Interaktionen in der Nase zu modellieren, wo HCoV-Infektionen beginnen. Nasale ALI-Kulturen sind sowohl für pathogene (SARS-CoV-2 und MERS-CoV) als auch für gängige HCoVs (HCoV-NL63 und HCoV-229E) permissiv und bieten verschiedene Vorteile gegenüber herkömmlichen Atemwegsepithelzelllinien wie A549 (eine Lungenadenokarzinom-Zelllinie)16,17. Nach der Differenzierung enthalten nasale ALI-Kulturen eine heterogene zelluläre Population und weisen viele der Funktionen auf, die vom in vivo Nasenepithel erwartet werden, wie z. B. die mukoziliäre Clearance-Maschinerie18. Nasenzellen bieten auch Vorteile gegenüber Kultursystemen der unteren Atemwege (z. B. humane Bronchialepithelzellen, HBECs), da die Gewinnung von Nasenepithelzellen durch zytologisches Zähneputzen im Vergleich zur Verwendung von Techniken wie der Bronchoskopie zur Erzielung von HBECs deutlich weniger invasiv ist 19,20,21.
In dieser Arbeit werden Methoden zur Nutzung dieses nasalen ALI-Kultursystems zur Charakterisierung von HCoV-Wirt-Interaktionen im Nasenepithel beschrieben. Wir haben diese Methoden in kürzlich veröffentlichten Arbeiten angewendet, um SARS-CoV-2, MERS-CoV, HCoV-NL63 und HCoV-229E 1,16,17 zu vergleichen. Obwohl diese Methoden und repräsentativen Ergebnisse die Untersuchung von HCoVs in diesem nasalen Zellmodell hervorheben, ist das System in hohem Maße anpassungsfähig an andere HCoVs sowie andere respiratorische Krankheitserreger. Darüber hinaus können diese Methoden breiter auf andere ALI-Kultursysteme angewendet werden, um die virale Replikation und den zellulären Tropismus sowie die Zytotoxizität und die Induktion des angeborenen Immunsystems nach einer Infektion zu untersuchen.
Die hier beschriebenen Methoden beschreiben ein primäres Epithelkultursystem, in dem von Patienten stammende Nasenepithelzellen an einer Luft-Flüssigkeits-Grenzfläche gezüchtet und zur Untersuchung von HCoV-Wirt-Interaktionen eingesetzt werden. Nach der Differenzierung rekapitulieren diese nasalen ALI-Kulturen viele Merkmale des in vivo Nasenepithels, einschließlich einer heterogenen Zellpopulation mit Flimmer-, Kelch- und Basalzellen sowie einer intakten mukoziliären Funktion mit robust schlagenden Zilien…
The authors have nothing to disclose.
Diese Studie hat die folgenden Finanzierungsquellen: National Institutes of Health (NIH) R01AI 169537 (S.R.W. und N.A.C.), NIH R01AI 140442 (S.R.W.), VA Merit Review CX001717 (N.A.C.), VA Merit Review BX005432 (S.R.W. und N.A.C.), Penn Center for Research on Coronaviruses and other Emerging Pathogens (S.R.W.), Laffey-McHugh Foundation (S.R.W. und N.A.C.), T32 AI055400 (CJO), T32 AI007324 (AF).
Alexa Fluor secondary antibodies (488, 594, 647) | Invitrogen | Various | |
BSA (bovine serum albumin) | Sigma-Aldrich | A7906 | |
cOmplete mini EDTA-free protease inhibitor | Roche | 11836170001 | |
Cytotoxicity detection kit | Roche | 11644793001 | |
DMEM (Dulbecco's Modified Eagle Media) | Gibco | 11965-084 | |
DPBS (Dulbecco's Phosphate Buffered Saline) | Gibco | 14190136 | |
DPBS + calcium + magnesium | Gibco | 14040-117 | |
Endohm-6G measurement chamber | World Precision Instruments | ENDOHM-6G | |
Epithelial cell adhesion marker (EpCAM; CD326) | eBiosciences | 14-9326-82 | |
Epithelial Volt/Ohm (TEER) Meter (EVOM) | World Precision Instruments | 300523 | |
FBS (Fetal Bovine Serum) | HyClone | SH30071.03 | |
FV10-ASW software for imaging | Olympus | Version 4.02 | |
HCoV-NL63 (Human coronavirus, NL63) | BEI Resources | NR-470 | |
HCoV-NL63 nucleocapsid antibody | Sino Biological | 40641-V07E | |
Hoescht stain | Thermo Fisher | H3570 | |
Laemmli sample buffer (4x) | BIO-RAD | 1610747 | |
LLC-MK2 cells | ATCC | CCL-7 | To titrate HCoV-NL63 |
MERS-CoV (Human coronavirus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), EMC/2012) | BEI Resources | NR-44260 | |
MERS-CoV nucleocapsid antibody | Sino Biological | 40068-MM10 | |
MUC5AC antibody | Sigma-Aldrich | AMAB91539 | |
Olympus Fluoview confocal microscope | Olympus | FV1000 | |
Phalloidin-iFluor 647 stain | Abcam | ab176759 | |
PhosStop easy pack (phosphatase inhibitors) | Roche | PHOSS-RO | |
Plate reader | Perkin Elmer | HH34000000 | Any plate reader or ELISA reader is sufficient; must be able to read absorbance at 492 nm |
RIPA buffer (50 mM Tris pH 8; 150 mM NaCl; 0.5% deoxycholate; 0.1% SDS; 1% NP40) | Thermo Fisher | 89990 | Can prep in-house or purchase |
RNeasy Plus Kit | Qiagen | 74134 | |
SARS-CoV-2 (SARS-Related Coronavirus 2, Isolate USA-WA1/2020) | BEI Resources | NR-52281 | |
SARS-CoV-2 nucleocapsid antibody | Genetex | GTX135357 | |
Triton-X 100 | Fisher Scientific | BP151100 | |
Type IV β- tubulin antibody | Abcam | ab11315 | |
VeroCCL81 cells | ATCC | CCL-81 | To titrate MERS-CoV |
VeroE6 cells | ATCC | CRL-1586 | To titrate SARS-CoV-2 |