Le strutture geodetiche ormeggiate a mezz’acqua chiamate Coral Arks forniscono una piattaforma di ricerca modulare, scalabile e regolabile verticalmente che può essere utilizzata per costruire, monitorare e perturbare le comunità della barriera corallina in aree precedentemente non operative, anche offshore.
Le barriere coralline prosperano e forniscono i massimi servizi ecosistemici quando supportano una struttura trofica multilivello e crescono in condizioni favorevoli di qualità dell’acqua che includono alti livelli di luce, rapido flusso d’acqua e bassi livelli di nutrienti. La scarsa qualità dell’acqua e altri fattori di stress antropogenici hanno causato la mortalità dei coralli negli ultimi decenni, portando al declassamento trofico e alla perdita di complessità biologica su molte barriere coralline. Le soluzioni per invertire le cause del declassamento trofico rimangono elusive, in parte perché gli sforzi per ripristinare le barriere coralline sono spesso tentati nelle stesse condizioni ridotte che hanno causato la mortalità dei coralli in primo luogo.
Le Arche di Corallo, strutture a mezz’acqua positivamente galleggianti, sono progettate per fornire migliori condizioni di qualità dell’acqua e biodiversità criptica di supporto per i coralli traslocati e reclutati naturalmente per assemblare mesocosmi sani della barriera corallina da utilizzare come piattaforme di ricerca a lungo termine. Le strutture autonome di monitoraggio della barriera corallina (ARMS), dispositivi di insediamento passivo, vengono utilizzate per traslocare la biodiversità criptica della barriera corallina alle Arche coralline, fornendo così una “spinta” al reclutamento naturale e contribuendo al supporto ecologico alla salute dei coralli. Abbiamo modellato e testato sperimentalmente due progetti di Arche per valutare le caratteristiche di resistenza delle strutture e valutare la loro stabilità a lungo termine nel mezzo dell’acqua in base alla loro risposta alle forze idrodinamiche.
Abbiamo quindi installato due progetti di strutture Arks in due siti di barriera corallina caraibica e misurato diverse metriche di qualità dell’acqua associate all’ambiente Arks nel tempo. Al momento del dispiegamento e 6 mesi dopo, le Arche Coral hanno mostrato metriche migliorate della funzione della barriera corallina, tra cui maggiore flusso, luce e ossigeno disciolto, maggiore sopravvivenza dei coralli traslocati e ridotta sedimentazione e microbizzazione rispetto ai vicini siti del fondo marino alla stessa profondità. Questo metodo fornisce ai ricercatori una piattaforma adattabile e a lungo termine per la costruzione di comunità di barriera corallina in cui le condizioni locali di qualità dell’acqua possono essere regolate modificando i parametri di distribuzione come la profondità e il sito.
In tutto il mondo, gli ecosistemi della barriera corallina stanno subendo transizioni da comunità bentoniche ad alta biodiversità e dominate dai coralli a comunità a bassa diversità dominate da macroalghe erbose e carnose 1,2,3. Decenni di progressi nella caratterizzazione dei meccanismi di degrado della barriera corallina hanno rivelato come i legami tra comunità microbiche e macroorganismiche aumentino il ritmo e la gravità di queste transizioni. Ad esempio, la pesca eccessiva delle barriere coralline da parte delle popolazioni umane avvia una cascata trofica in cui gli zuccheri in eccesso di derivazione fotosintetica dalle alghe non pascolate deviano energia nelle comunità microbiche della barriera corallina, guidando così la patogenesi e causando il declino dei coralli 4,5,6. Questo declassamento trofico è rafforzato dalla perdita di biodiversità sulle barriere coralline che deriva dal declino della qualità dell’acqua 7,8. Gli esperimenti a livello di mesocosmo possono essere utilizzati per comprendere meglio e mitigare il declassamento trofico delle comunità della barriera corallina migliorando la biodiversità e migliorando la qualità dell’acqua, ma le sfide logistiche rendono questi studi difficili da implementare in situ.
Una conseguenza del declassamento trofico sulle barriere coralline è la diffusa perdita di biodiversità criptica, gran parte della quale rimane non caratterizzata 7,9. I coralli si basano su una serie diversificata di organismi criptici della barriera corallina (“criptobiota”) che supportano la loro salute svolgendo ruoli fondamentali nella difesa dei predatori 10, nella pulizia11, nel pascolo delle alghe concorrenti 12,13 e nella regolazione della chimica dell’acqua di barriera 14,15. Fino a poco tempo fa e a causa dei limiti metodologici delle indagini visive, il criptobiota della barriera corallina è stato sottorappresentato e poco compreso nel contesto dell’ecologia della barriera corallina, e sono, quindi, raramente considerati negli sforzi per ripristinare o ricostruire le barriere coralline. Negli ultimi dieci anni, l’uso di unità di insediamento standardizzate chiamate Autonomous Reef Monitoring Structures (ARMS) combinate con approcci di sequenziamento ad alto rendimento ha permesso una migliore raccolta e caratterizzazione del criptobiota della barriera corallina16,17. ARMS recluta passivamente rappresentanti di quasi tutte le biodiversità conosciute della barriera corallina e ha contribuito a rivelare numerosi ruoli funzionali degli organismi criptici nei processi su scala di barriera 9,18,19,20,21,22,23. Queste unità di insediamento, quindi, forniscono un meccanismo per traslocare il biota criptico della barriera corallina insieme ai coralli al fine di assemblare comunità di barriera più intatte con meccanismi biologicamente mediati, come il pascolo, la difesa e il miglioramento della qualità dell’acqua locale, che sono essenziali per mantenere la struttura trofica.
Le barriere coralline dominate dai coralli prosperano in ambienti ad alta luminosità, a basso contenuto di nutrienti e ben ossigenati. Le attività umane come l’urbanizzazione, l’agricoltura e la pesca eccessiva hanno ridotto la qualità dell’acqua su molte barriere coralline aumentando i sedimenti, i nutrienti, i metalli e altri composti nel deflusso 24,25 e alterando il ciclo biogeochimico26. A loro volta, queste attività degradano le comunità di barriera corallina attraverso il soffocamento, l’esaurimento energetico, la consegna di inquinanti associati alla sedimentazione27,28, migliorando la crescita di macroalghe che competono con i coralli 29, aumentando l’abbondanza di patogeni microbici6,30,31 e creando zone ipossiche che uccidono invertebrati criptici32,33 . Questi e altri “impatti locali” sono aggravati dai cambiamenti regionali e globali nelle condizioni oceaniche, tra cui l’aumento delle temperature e la diminuzione del pH, peggiorando ulteriormente le condizioni per i coralli e altri organismi della barriera corallina34,35. All’interfaccia bentonico-acqua, in particolare, la dinamica respiratoria e fotosintetica delle comunità bentoniche causa fluttuazioni del pH e dell’ossigeno disciolto, che diventano più pronunciate su barriere coralline altamente degradate, creando così condizioni che gli invertebrati bentonici non possono tollerare32,36,37,38 . Fornire condizioni di qualità dell’acqua adeguate è, quindi, essenziale per assemblare comunità di barriera funzionanti, ma questo rimane difficile perché un numero crescente di barriere coralline è intrappolato in vari stati di degrado.
Molte delle sfide affrontate dai coralli e dai taxa criptici fondamentali sul benthos possono essere superate attraverso il trasferimento a mezz’acqua, definito qui come l’impostazione della colonna d’acqua tra la superficie dell’oceano e il fondo marino. Nell’ambiente di mezz’acqua, la qualità dell’acqua è migliorata39,40, la sedimentazione è ridotta e la distanza dal fondo marino smorza le fluttuazioni dei parametri associati al metabolismo bentonico. Queste caratteristiche sono ulteriormente migliorate spostandosi al largo, dove gli impatti antropogenici terrestri, come il deflusso di derivazione terrestre, diventano sempre più diluiti con la distanza dalla costa. Qui, introduciamo e forniamo protocolli per costruire, distribuire e monitorare le Arche della Barriera Corallina, un approccio che sfrutta il miglioramento delle condizioni di qualità dell’acqua a mezz’acqua e incorpora la biodiversità criptica su strutture ancorate e positivamente galleggianti per l’assemblaggio delle comunità della barriera corallina.
I sistemi di Arche della Barriera Corallina, o “Arche”, sono costituiti da due componenti principali: (1) una piattaforma geodetica rigida sospesa elevata sopra il benthos e (2) ARMS ricoperti di organismi o “seminati” che traslocano il criptobiota della barriera corallina dalle vicine aree bentoniche, integrando così i processi naturali di reclutamento per fornire ai coralli traslocati una comunità di barriera corallina più diversificata e funzionale. È stata selezionata una struttura geodetica per massimizzare la resistenza e ridurre al minimo il materiale da costruzione (e, quindi, il peso), nonché per creare un ambiente di flusso turbolento interno analogo alla matrice della barriera corallina.
Due progetti di Arche sono stati installati con successo in due siti di campo dei Caraibi e sono attualmente utilizzati per la ricerca sulla creazione della comunità di barriera corallina e sulla successione ecologica (Figura 1). Le strutture di Coral Arks sono destinate ad essere piattaforme di ricerca a lungo termine e, come tali, un obiettivo primario di questo manoscritto è quello di descrivere i protocolli per localizzare, installare, monitorare e mantenere queste strutture per massimizzare la loro stabilità e longevità nell’ambiente di mezz’acqua. Una combinazione di modellazione e test in acqua è stata utilizzata per valutare le caratteristiche di resistenza delle strutture e regolare il progetto per resistere alle forze idrodinamiche previste. Dopo l’installazione, le comunità di barriera corallina sono state stabilite sulle Arche e sui vicini siti di controllo bentonico alla stessa profondità attraverso una combinazione di traslocazione attiva (coralli e unità ARMS seminate) e reclutamento naturale. Le condizioni di qualità dell’acqua, le dinamiche della comunità microbica e la sopravvivenza dei coralli sulle Arche sono state documentate in diversi punti temporali durante il primo periodo di successione e confrontate con i siti di controllo bentonici. Ad oggi, le condizioni associate all’ambiente delle Arche di Corallo a mezz’acqua sono state costantemente più favorevoli per i coralli e i loro consorzi criptici associati rispetto ai vicini siti di controllo bentonico alle stesse profondità. I metodi seguenti descrivono i passaggi necessari per replicare l’approccio Coral Arks, incluso come selezionare i siti e progettare e distribuire strutture Coral Arks. Gli approcci suggeriti per il monitoraggio delle Arche Coral sono inclusi nel file supplementare 1.
I risultati rappresentativi presentati sopra dimostrano che le Arche di Corallo forniscono un habitat e migliori condizioni di qualità dell’acqua per l’assemblaggio di comunità di barriera corallina su piattaforme di ricerca stabili e in situ. Le arche e i siti di controllo del fondo marino alla stessa profondità mostravano profili di qualità dell’acqua costantemente diversi. Velocità medie di corrente più elevate e una maggiore distanza dalla costa hanno ridotto la sedimentazione e la torbidità nell’ambiente a mezz’acqua nei siti delle Arche (Figura 6B), probabilmente contribuendo alle concentrazioni di carbonio organico disciolto misurate più basse sulle Arche (Figura 6F). Inoltre, questi miglioramenti nella chiarezza dell’acqua hanno portato a elevate intensità luminose diurne sulle Arche rispetto ai siti di controllo (Figura 6A). Fluttuazioni inferiori dell’ossigeno disciolto indicano una migliore disponibilità di ossigeno per i coralli sulle Arche rispetto al benthos, specialmente di notte (Figura 6G). Queste metriche sono state tutte associate a miglioramenti nella sopravvivenza dei coralli 42, nella crescita 43,44,45 e nel recupero dallo stress 46,47 nel lavoro passato e possono essere collegate a migliori risultati di sopravvivenza dei coralli traslocati alle Arche rispetto ai siti di controllo bentonico (Figura 8 ). Il fatto che queste condizioni persistano anche dopo l’accumulo di biomassa sostanziale attraverso il biofouling indica che i processi naturali di reclutamento non diminuiscono le migliori caratteristiche di qualità dell’acqua dell’ambiente a mezz’acqua. Le arche sono state dispiegate a 3 km al largo dei siti di controllo bentonico e probabilmente hanno beneficiato della diminuzione degli input di sedimenti di derivazione terrestre, dei nutrienti e possibilmente delle pressioni di pesca che sfidano i siti costieri. L’ubicazione delle arche in aree con acqua pulita e basso impatto umano (come l’offshore) può fornire un ambiente migliore rispetto alle zone costiere fortemente colpite per propagare la biodiversità della barriera corallina per esperimenti a livello di mesocosmo.
I risultati preliminari hanno anche suggerito che le Arche di mezz’acqua hanno sperimentato meno microbizzazione, un processo centrale della barriera corallina associato al degrado degli habitat bentonici della barriera corallina 4,48. Elevati apporti di nutrienti e pesca eccessiva sono stati identificati come driver di circuiti di feedback trofico a livello di barriera in cui proliferano comunità microbiche energeticamente destabilizzate, con conseguente prelievo respiratorio di ossigeno metabolicamente disponibile e aumento dell’incidenza di patogeni corallini al benthos 6,49,50,51 . La ridotta abbondanza di virus liberi sulle barriere microbizzate, che fungono da controllo litico primario sulla crescita della comunità microbica, indica una rottura nella struttura trofica che favorisce un’ulteriore espansione microbica52. I microbi associati alla colonna d’acqua sulle Arche erano sia meno abbondanti (Figura 7B) che fisicamente più piccoli (Figura 7D) rispetto ai siti del fondo marino. Le Arche hanno anche mostrato rapporti virus-microbi più elevati (Figura 7A), abbondanza di virus liberi (Figura 7C) e disponibilità di ossigeno disciolto, in particolare di notte (Figura 6G). Nel loro insieme, questi risultati indicano che l’ambiente di mezz’acqua mostrava meno potenziale di microbizzazione rispetto ai siti del fondo marino. Le arche, come mesocosmi su cui le condizioni ambientali possono essere alterate semplicemente regolando verticalmente la colonna d’acqua, offrono l’opportunità di mitigare ed esplorare ulteriormente i meccanismi microbici e molecolari del degrado della barriera corallina.
Sfere geodetiche di due diverse frequenze sono state selezionate per la progettazione delle Arche di Corallo qui presentate (Figura 1). La frequenza geodetica (1V, 2V, 3V) indica il numero di sottoelementi ripetuti in una sfera geodetica, con frequenze più alte corrispondenti a un numero maggiore di sottoelementi triangolari. Dal punto di vista strutturale, i poliedri geodetici distribuiscono le sollecitazioni meccaniche in tutta la struttura, risultando in un’elevata resistenza innata per le loro dimensioni53,54. Queste caratteristiche offrono un’elevata durata e longevità, ma hanno il costo di una maggiore resistenza idrodinamica, che può comportare carichi più elevati sul sistema di ormeggio. Dal punto di vista dell’habitat, la resistenza generata da un sistema Ark rappresenta un indicatore della diffusione della quantità di moto all’interno della struttura e, quindi, del grado di riduzione del flusso ambientale interno. I risultati modellati e convalidati sperimentalmente indicano una riduzione del 40%-70% della velocità di flusso all’interno delle Arche “Shell” rispetto al campo di flusso circostante a causa della generazione di flusso turbolento all’interno delle strutture (vedi Sezione 6 del File Supplementare 1). Mentre il livello ottimale di riduzione del flusso interno non è chiaro (e differisce con la frequenza geodetica), le aree di flusso ridotto all’interno della struttura sono importanti per creare habitat di nicchia 55,56, rimineralizzare i nutrienti 57,58 e promuovere la ritenzione e l’insediamento delle larve 59,60 . In generale, strutture geodetiche più grandi e ad alta frequenza, in particolare nei siti di installazione più esposti, richiedono sistemi di ancoraggio con maggiore potenza di tenuta e maggiore ridondanza incorporati nella progettazione strutturale.
I risultati delle misurazioni sul campo della componente di resistenza della tensione sul sistema di ormeggio “Shell” Ark corrispondevano strettamente ai risultati generati dalle stime di traino modellate e sperimentali (Figura 4) ed erano ben all’interno degli intervalli di progettazione previsti. Questi risultati indicano che le ipotesi del modello idrodinamico sono valide e che il modello può prevedere le forze di resistenza sugli intervalli di corrente di fondo. Tuttavia, mentre le deviazioni nei dati modellati e sperimentali erano piccole, la gamma di flussi durante il periodo di test, che erano tipici delle velocità di flusso ambientali e non tempestose nel sito, non consentiva una convalida rigorosa sull’intero spettro di modellazione. Nel prevedere i requisiti di progettazione dei sistemi Coral Arks, gli sforzi di modellazione dovrebbero essere combinati con informazioni sulla frequenza delle tempeste e sull’esposizione nei siti di dispiegamento pianificati per progettare strutture e sistemi di ormeggio in grado di sopravvivere alle forze idrodinamiche previste. Il lavoro di modellazione qui presentato può essere utilizzato per progettare sistemi Ark in altri siti con input minimi (dimensioni desiderate dell’Ark, frequenza e velocità media della corrente nel sito di dispiegamento) fornendo coefficienti di resistenza e forze massime previste sul sistema di ormeggio e ancoraggio.
I sistemi Arks e ARMS sono modulari e possono essere costruiti a scale diverse e con materiali alternativi a quelli qui descritti. Sebbene la loro longevità finale non sia stata ancora determinata, le Arche di Corallo sono state progettate per avere un ciclo di vita di circa 10 anni. La composizione materiale delle Arche e delle ARMS influenza la longevità delle strutture, il peso dei sistemi e, quindi, la galleggiabilità richiesta per compensare il peso e può influenzare la risposta delle prime comunità di incrostazioni (File supplementare 1-Figura S7). Ad esempio, il calcare fornisce un substrato più naturale per la colonizzazione biologica sulle ARMS ed è facilmente ed economicamente reperito sulla maggior parte delle isole della barriera corallina carbonatica, ma è più fragile e più pesante di altri materiali come PVC e fibra di vetro. Questi fattori dovrebbero essere considerati rispetto alle caratteristiche specifiche del sito per progettare ARMS, Arche e sistemi di ormeggio che meglio rispondono ai risultati del progetto desiderati.
Anche i siti di distribuzione per Coral Arks dovrebbero essere selezionati in base agli obiettivi del progetto previsti (ad esempio, ricerca, mitigazione o restauro). I fattori da considerare per la selezione del sito includono l’accesso ai materiali, lo stato o le condizioni della barriera corallina, l’investimento / coinvolgimento della comunità, la limitazione delle risorse, il supporto istituzionale e i requisiti di autorizzazione. Le Arche di Corallo possono offrire opportunità per soddisfare esigenze specifiche in siti che (1) contengono barriere coralline viventi che sono in condizioni relativamente povere e trarrebbero beneficio da attività di restauro per migliorare il reclutamento di coralli, la copertura corallina, la protezione costiera o le risorse alimentari umane; (2) hanno la necessità di traslocazione dei coralli in un altro luogo, che può verificarsi, ad esempio, quando ci sono requisiti legali per spostare i coralli viventi dai detriti destinati alla rimozione (in questi siti, le Arche di Corallo possono essere utilizzate in collaborazione con, o a sostegno di, sforzi di ripristino e impianto esistenti per migliorare i risultati della traslocazione); (3) richiedere la ricerca su nuove tecnologie di conservazione e restauro che utilizzano le Arche di Corallo per migliorare il successo degli sforzi locali; o (4) avere condizioni locali sufficientemente distinte (cioè diversa entità dell’impatto antropogenico), il che significa che i mesocosmi standardizzati potrebbero produrre confronti significativi sui processi e gli interventi della barriera corallina. Gli approcci specifici per il monitoraggio degli aspetti dell’ecosistema delle Arche coralline come la crescita biologica, la diversità e la chimica dell’acqua varieranno tra i progetti in base agli obiettivi del progetto e alle variabili specifiche del sito. Uno schema rappresentativo per il monitoraggio scientifico delle Arche Coral condotto fino ad oggi è fornito nella Sezione 5 del Supplemental File 1.
Il design delle strutture di Coral Arks può ospitare coralli di quasi tutte le specie, dimensioni ed età e dovrebbe fornire condizioni migliori rispetto a quelle di un benthos disturbato della barriera corallina. A seconda dei tassi di crescita e calcificazione osservati su un dato sistema, l’aggiunta di galleggiamento positivo alle strutture delle Arche può essere necessaria per compensare la crescita biologica e ridurre il rischio di affondamento. Le strutture a galleggiamento positivo dell’acqua media possono essere pesate utilizzando una cella di carico a tensione/compressione, o estensimetro, per determinare se il peso in acqua della comunità sta aumentando (Figura 5). Le misurazioni periodiche o a lungo termine che utilizzano la cella di carico possono integrare altre metriche di crescita dei coralli a risoluzione più fine per generare una metrica di crescita / calcificazione a livello di comunità e sono state incluse come attività di manutenzione regolare per determinare se il sistema ha sufficiente galleggiabilità positiva per compensare questa crescita biologica nel tempo. Nel caso in cui un’Arca installata non possa più essere monitorata o mantenuta, potrebbe essere spostata e / o la galleggiabilità potrebbe essere rimossa per consentire all’Arca di essere saldamente attaccata al benthos.
I metodi qui descritti forniscono ai ricercatori un toolkit versatile per assemblare comunità di barriere coralline di acque medie che possono essere situate in luoghi con una migliore qualità dell’acqua. Alterando la profondità o la posizione delle strutture delle Arche, i cambiamenti nei parametri di qualità dell’acqua possono essere collegati sperimentalmente ai cambiamenti nella struttura della comunità della barriera corallina e alle traiettorie di successione. Questa caratteristica di progettazione consente ai ricercatori di sfruttare lo spazio abbondante e sottoutilizzato nell’ambiente di mezz’acqua per assemblare e studiare i mesocosmi della barriera corallina. L’uso di ARMS seminati per traslocare la biodiversità criptica e fornire una “spinta” al reclutamento naturale di invertebrati al pascolo mobile fornisce una soluzione funzionale per ridurre il biofouling algale e, quindi, la competizione bentonica per i coralli. L’utilizzo di strutture di campionamento consolidate e standardizzate come componenti di questo sistema fornisce un valore aggiunto consentendo il monitoraggio a lungo termine delle comunità criptiche su Arks e il confronto con i set di dati generati utilizzando ARMS come strumento di censimento globale della biodiversità.
Le Arche di Corallo possono fungere da piattaforma più olistica, integrata e autoregolante per la propagazione della biomassa di coralli e invertebrati che può quindi essere impiantata nelle vicine barriere coralline degradate e può fornire un rifugio sicuro per i coralli per crescere e riprodursi in condizioni di qualità dell’acqua migliorate. Come è attualmente dimostrato a Porto Rico, le Arche possono produrre migliori risultati di sopravvivenza per progetti di mitigazione che coinvolgono il trasferimento di coralli e biodiversità della barriera corallina da detriti o aree degradate. Le arche hanno rilevanza nei progetti a lungo termine come metodo per sostituire gli habitat per le popolazioni ittiche, testare nuove strategie di conservazione e preservare la biodiversità nativa della barriera corallina. Nel processo, le Arche forniscono strumenti versatili per condurre studi in situ sugli assemblaggi della barriera corallina e sulla successione ecologica e possono generare nuove intuizioni sulla connettività della barriera corallina.
The authors have nothing to disclose.
Ringraziamo Mark Vermeij, Kristen Marhaver e la Fondazione di ricerca CARMABI di Curaçao per aver fornito risorse, supporto e approfondimenti per questo progetto. Ringraziamo il NAVFAC Atlantic Vieques Restoration Program e il team di Jacobs Engineering per il loro sostanziale supporto logistico e tecnico nell’installazione, manutenzione e monitoraggio delle Arche di Corallo a Vieques. Siamo anche grati a Mike Anghera, Toni Luque, Cynthia Silveira, Natascha Varona, Andres Sanchez-Quinto, Lars ter Horst e Ben Darby per il loro aiuto e contributo costruttivo sul campo. Questa ricerca è stata finanziata da un Gordon and Betty Moore Foundation Aquatic Symbiosis Investigator Award a FLR e dal Department of Defense Environmental Security Technology Certification Program (RC20-5175).
PVC ARMS | |||
316 Stainless Steel Hex Head Bolt, Partially Threaded, 8" length, 1/4"-20 Thread Size | McMaster Carr | 92186A569 | Bolts for PVC ARMS assembly Per unit: 4x |
316 Stainless Steel Hex Nut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster Carr | 94805A029 | Nuts for PVC ARMS assembly Per unit: 8x |
316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster Carr | 90715A125 | Locknuts for PVC ARMS assembly Per unit: 4x |
316 Stainless Steel Washer for 1/4" Screw Size, 0.281" ID, 0.625" OD | McMaster Carr | 90107A029 | Washers for PVC ARMS assembly Per unit: 8x |
Nylon Unthreaded Spacers – 1/2" Long, 1/2" OD, Black | McMaster Carr | 90176A159 | Nylon spacers for PVC ARMS assembly Per unit: 20x |
PVC Sheet Type 1, 0.25" Thick, Gray | McMaster Carr | 8747K215 | PVC for ARMS stacking plates. See Supplemental File 1-Figure SI 4. Per unit: 9x Refers to drawing: Yes |
PVC Sheet Type 1, 0.5" Thick, Gray | McMaster Carr | 8747K217 | PVC for ARMS baseplates. See Supplemental File 1-Figure SI 1. Per unit: 1x Refers to drawing: Yes |
PVC Sheet Type 1, 0.5" Thick, Gray | McMaster Carr | 8747K217 | PVC for ARMS long cross spacers. See Supplemental File 1-Figure SI 2. Per unit: 4x Refers to drawing: Yes |
PVC Sheet Type 1, 0.5" Thick, Gray | McMaster Carr | 8747K217 | PVC for ARMS short cross spacers. See Supplemental File 1-Figure SI 3. Per unit: 8x Refers to drawing: Yes |
Ratcheting Combination Wrench, 7/16" | McMaster Carr | 5163A15 | Wrenches to secure PVC ARMS hardware Per unit: 2x |
Rebar, 3-ft Lengths, 1/2" Thick | McMaster Carr | 7480N115 | Rebar stakes to secure PVC ARMS to benthos. Mallet required. Per unit: 4x |
Sequentially Numbered Metal Tags | McMaster Carr | 2208N349 | Numbered tags for ARMS ID Per unit: 1x |
Limestone ARMS | |||
DeWalt Wet Tile Saw | Home Depot | D24000S | Cut limestone tile into stackable pieces Per unit: 1x |
Lift Bag, 50 lb Capacity | Amazon | B07GCNGRDR | Lift bag for transport of Limestone ARMS to benthos Per unit: 1x |
Milk Crate, Heavy Duty, 13" x 19" x 11" | Amazon | B06XGBDJMD | Crate for transport of Limestone ARMS to benthos Per unit: 1x |
Natural Limestone or Travertine Tile (Unfilled) – 12" x 12" | Bedrosians Tile & Stone | TRVSIENA1212T | Base material for Limestone ARMS layers and stacking pieces. See Supplemental File 1-Figure SI 7 and Figure SI 8. Per unit: 10x Refers to drawing: Yes |
PC-11 Epoxy Adhesive Paste, Two-Part Marine Grade | Amazon | B008DZ1864 | Two-part epoxy for Limestone ARMS assembly |
Shell Ark | |||
Downline: 1" Nylon, 6' length thimble-to-thimble with stainless sailmaker thimble at top, heavy duty galvanized thimble at bottom | West Marine | Custom | Nylon mooring line for attaching Ark mooring bridle to anchor system. Per unit: 1 |
Main structure: 105-B Epoxy | West Marine (made by West System) | 318352 | Epoxy to seal foam in struts. |
Main structure: 205-B Hardener | West Marine (made by West System) | 318378 | Epoxy to seal foam in struts. |
Mooring bridle: 3-1/8" X 2" small diamond base padeye with 7/8" bail | West Marine (Made by Harken) | 130560 | Padeyes for attaching mooring system to Ark base. Per unit: 5 |
Main structure: 3/4" H-80 Divinycell Closed-Cell Foam, Plain Sheet 48" x 96" | Fiberglass Supply | L18-1110 | Buoyant foam for struts. Cut foam into 1.5" wide strips, 15.5" long for S1 struts and 19" long for S2 struts, add to struts. Per unit: 120 |
Downline: 3/4" Stainless Masterlink | Lift-It (Made by Suncor) | S0652-0020 | Masterlink, connects top of swivel to lower portion of 5-point mooring bridle. Per unit: 1 |
Mooring bridle: 3/8" Stainless Long D Shackles with Captive Self-Locking Pin | West Marine (Made by Wichard) | 116293 | High-strength shackles to connect pad eyes to mooring system. Per unit: 5 |
Main structure: 316 SS, Pan Head Phillips Screw, 1/4-20, 3" Long | McMaster Carr | 91735A385 | Bolts to attach hull anodes to stainless struts Per unit: 2 |
ARMS attachments: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/2"-13 Thread Size | McMaster | 90715A165 | Locknuts for attaching ARMS to ARMS mounting baseplates (8 per unit) Per unit: 80 |
ARMS Baseplates: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster | 90715A125 | Locknuts for ARMS mounting baseplates (struts and Stars) Per unit: 600 |
Coral plate baseplates: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster | 90715A125 | Locknuts for attaching coral plate baseplates to struts Per unit: 600 |
Coral plate attach: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster | 90715A125 | Locknuts to attach coral plates to baseplates Per unit: 80 |
Mooring bridle: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 1/4"-20 Thread Size | McMaster | 90715A125 | Padeye locknuts for attaching pad eyes to struts. Per unit: 20 |
Main structure: 316 Stainless Steel Nylon-Insert Locknut, Super-Corrosion-Resistant, 10-32 Thread Size | McMaster | 90715A115 | Locknuts for star-strut connections Per unit: 475 |
Main structure: 316 Stainless Steel Pan Head Phillips Screw, 10-32 Thread, 2-1/2" Long | McMaster | 91735A368 | Bolts for star-strut connections Per unit: 475 |
Mooring bridle: 316 Stainless Steel Phillips Flat Head Screws, 1/4"-20 Thread Size, 2-3/4" Long | McMaster | 91500A341 | Padeye bolts for attaching pad eyes to struts. Per unit: 15 |
ARMS Baseplates: 316 Stainless Steel Phillips Flat Head Screws, 1/4"-20 Thread Size, 3" Long | McMaster | 91500A554 | Bolts for attaching ARMS mounting baseplates to Stars Per unit: 475 |
Mooring bridle: 316 Stainless Steel Phillips Flat Head Screws, 1/4"-20 Thread Size, 3" Long | McMaster | 91500A554 | Padeye bolts for attaching pad eyes through struts & Stars. Per unit: 5 |
Mooring bridle: 316 Stainless Steel Screw-Pin Shackle – for Lifting, 1/2" Thick | McMaster | 3583T15 | Shackles to connect lower bridle thimbles to small links on Masterlink. Per unit: 5 |
ARMS attachments: 316 Stainless Steel Split Lock Washer for 1/2" Screw Size, 0.512" ID, 0.869" OD | McMaster | 92147A033 | Lock washers for attaching ARMS to ARMS mounting baseplates (4 per unit) Per unit: 40 |
ARMS attachments: 316 Stainless Steel Washer for 1/2" Screw Size, 0.531" ID, 1.25" OD | McMaster | 90107A033 | Backing washers for attaching ARMS to ARMS mounting baseplates (4 per unit) Per unit: 40 |
ARMS Baseplates: 316 Stainless Steel Washer for 1/4" Screw Size, 0.281" ID, 0.625" OD | McMaster | 90107A029 | Washers for attaching ARMS mounting baseplates to struts Per unit: 40 |
Coral plate baseplates: 316 Stainless Steel Washer for 1/4" Screw Size, 0.281" ID, 0.625" OD | McMaster | 90107A029 | Washers for attaching coral plate baseplates to struts Per unit: 40 |
Coral plate attach: 316 Stainless Steel Washer for 1/4" Screw Size, 0.281" ID, 0.625" OD | McMaster | 90107A029 | Washers to attach coral plates to baseplates Per unit: 160 |
Main structure: 316 Stainless Steel Washer for Number 10 Screw Size, 0.203" ID, 0.438" OD | McMaster | 90107A011 | Washers for star-strut connections Per unit: 475 |
Buoyancy: 316 Stainless Steel Washer, 1" Screw Size, 2" OD | McMaster | 90107A038 | Large washers for central rod (2 per float) Per unit: 22 |
ARMS attachments: 316 Stainless Steel Washer, Oversized, 1/2" Screw, 1.5" OD, 0.052"- 0.072" Thickness | McMaster | 91525A145 | Oversized washers for attaching ARMS to ARMS mounting baseplates (4 per unit) Per unit: 40 |
Coral plates: 3M Marine Adhesive Sealant – Fast Cure 5200 | McMaster | 67015A44 | Adhesive to glue limestone tiles to PVC coral baseplates. Drill out corners with masonry bit. |
Buoyancy: 3M Marine Adhesive Sealant – Fast Cure 5200 | McMaster | 67015A44 | Adhesive for securing fiberglass threaded rods into trawl floats Per unit: 2 |
Mooring bridle: 5/8" Dyneema with Stainless Sailmakers Thimbles at Top and Bottom | West Marine | Custom | 5-leg mooring bridle for attaching Ark to downline. Per unit: 5 |
Downline: Clevis-to-Clevis Swivel – Not for Lifting, 316 Stainless Steel, 6-7/32" Long | McMaster | 37405T29 | Swivel, bottom connects to top of downline, top connects to large link in Masterlink. Per unit: 1 |
Buoyancy: Fiberglass Hex Nut, 1"-8 Thread Size | McMaster | 91395A038 | Fiberglass hex nuts for securing fiberglass threaded rods into trawl floats Per unit: 30 |
Buoyancy: Fiberglass Threaded Rod, 1"-8 Thread Size, 8 Feet Long | McMaster | 91315A238 | Fiberglass threaded rod to attach float to Ark. See Supplemental File 1-Figure SI 16. Per unit: 10 Refers to drawing: Yes |
Anchor system: Galvanized Alloy Steel Shackle with Screw Pin – for Lifting, 1/2" Thick | McMaster | 3663T42 | Middle shackle from chain to pear link. Per unit: 3 |
Anchor system: Galvanized Alloy Steel Shackle with Screw Pin – for Lifting, 3/4" Thick | McMaster | 3663T44 | Upper large shackle to connect pear link to lower downline thimble. Per unit: 1 |
Anchor system: Galvanized Alloy Steel Shackle with Screw Pin – for Lifting, 3/4" Thick | McMaster | 3663T44 | Anchor shackle. Per unit: 3 |
Anchor system: Galvanized Alloy Steel Shackle with Screw Pin – for Lifting, 3/8" Thick | McMaster | 3663T51 | Shackle to connect chain to upper middle shackle. Per unit: 3 |
Anchor system: Galvanized Alloy Steel Shackle with Screw Pin – for Lifting, 3/8" Thick | McMaster | 3663T51 | Lower small shackle to connect chain and anchor shackle. Per unit: 3 |
Install & Tools: HARKEN–57mm Carbo Air® Triple Block | West Marine | 200076 | Top of block and tackle Per unit: 1 |
Install & Tools: HARKEN–57mm Carbo Air® Triple Block with Becket and Cam | West Marine | 1171644 | Base of block and tackle Per unit: 1 |
ARMS Baseplates: Heat-Shrink Tubing, 0.50" ID Before Shrinking | McMaster | 7856K47 | Heatshrink for non-slip. Cut into 1.5" lengths, slide over a SS u-bolt bracket and use heat gun to tighten onto bracket. Per unit: 20 |
Coral plate baseplates: Heat-Shrink Tubing, 0.50" ID Before Shrinking | McMaster | 7856K47 | Heatshrink for non-slip. Cut into 1.5" lengths, slide over a SS u-bolt bracket and use heat gun to tighten onto bracket. Per unit: 40 |
Buoyancy: Heatshrink for covering threaded rods before mounting in floats, 14" sections | McMaster | 7856K66 | Heatshrink for non-slip. Cut into 14" lengths. Slide onto fiberglass rods with 1" exposed on one end and 2-1/4" exposed on the other. Use heat gun to shrink until snug. Per unit: 11 |
Anchor system: High-Strength Grade 40/43 Chain-Not for Lifting, Galvanized Steel, 5/16 Trade Size | McMaster | 3588T23 | Chain to connect anchors and downline. Per unit: 3 |
Install & Tools: LOW-STRETCH ROPE, 7/16" DIAMETER | McMaster | 3789T25 | Rope for block and tackle Per unit: 250 |
ARMS Baseplates: Marine-Grade Moisture-Resistant HDPE, 48" x 48", 1/2" Thick | McMaster | 9785T82 | Sheeting for ARMS mounting baseplates. See Supplemental File 1-Figure SI 13. Per unit: 10 Refers to drawing: Yes |
Coral plate baseplates: Marine-Grade Moisture-Resistant HDPE, 48" x 48", 1/2" Thick | McMaster | 9785T82 | Sheeting for coral plate baseplates. See Supplemental File 1-Figure SI 14. Per unit: 20 Refers to drawing: Yes |
Mooring bridle: Martyr Collar Anode Zinc 3/4" x 2 1/8" x 2 1/8" | West Marine | 5538715 | Sacrificial anodes for Masterlinks on mooring lines Per unit: 2 |
Main structure: Martyr Hull Anode Zinc 6 1/4" x 2 3/4" x 5/8" | West Marine | 484998 | Sacrificial anodes for stainless struts at Ark base Per unit: 3 |
ARMS Baseplates: Mounting Plate for 1/4"-20 Thread Size, 2" ID 304 Stainless Steel U-Bolt | McMaster | 8896T156 | Bracket plate w/heatshrink, for attaching ARMS mounting baseplates to struts Per unit: 6 |
Coral plate baseplates: Mounting Plate for 1/4"-20 Thread Size, 2" ID 304 Stainless Steel U-Bolt | McMaster | 8896T156 | Bracket plate w/heatshrink, for attaching coral plate baseplates to struts Per unit: 40 |
Main structure: N1 Stars, 316 SS, 5mm Thick Connectors for DIY VikingDome F2 Sphere, modified | Viking Dome | ICO2-AISI | N1 Stars modified for central rod. Machine/weld connections to insert top and bottom of unthreaded fiberglass structural rod. See Supplemental File 1-Figure SI 10. Per unit: 2 |
Main structure: N1 Stars, 316 SS, 5mm Thick Connectors for DIY VikingDome F2 Sphere, unmodified | Viking Dome | ICO2-AISI | Unmodified N1 Stars for Ark assembly. See Supplemental File 1-Figure SI 10 Per unit: 10 Refers to drawing: Yes |
Main structure: N2 Stars, 316 SS, 5mm Thick Connectors for DIY VikingDome F2 Sphere, modified | Viking Dome | ICO2-AISI | N2 Stars modified for floats. Drill larger center hole to accommodate 1" threaded fiberglass rod. Per unit: 10 |
Main structure: N2 Stars, 316 SS, 5mm Thick Connectors for DIY VikingDome F2 Sphere, modified | Viking Dome | ICO2-AISI | N2 Stars modified for pad eyes. Drill larger bolt hole (bit – 1/4") on outer hole of one arm for Padeye connector. Per unit: 5 |
Main structure: N2 Stars, 316 SS, 5mm Thick Connectors for DIY VikingDome F2 Sphere, unmodified | Viking Dome | ICO2-AISI | Unmodified N2 Stars for Ark assembly Per unit: 15 |
Anchor system: Pear-Shaped Link – Not for Lifting, Galvanized Steel, 3/4" Thick | McMaster | 3567T34 | Link to connect 3x 1/2" shackles to upper large shackle. Per unit: 1 |
Install & Tools: Phillips Screwdriver, Size No. 2 | McMaster Carr | 5682A28 | Tighten down locknuts on star-strut bolts Per unit: 1 |
Coral plates: PVC Sheet Type 1, Gray, 48" x 48", 1/4" Thick | McMaster | 8747K194 | PVC baseplates for coral plates. See Supplemental File 1-Figure SI 4. Per unit: 20 Refers to drawing: Yes |
Install & Tools: Ratcheting Combination Wrench, 3/4" | McMaster Carr | 5163A21 | Attach ARMS to ARMS mounting baseplates Per unit: 2 |
Install & Tools: Ratcheting Combination Wrench, 3/8" | McMaster Carr | 5163A14 | Tighten down locknuts on star-strut bolts Per unit: 2 |
Install & Tools: Ratcheting Combination Wrench, 7/16" | McMaster Carr | 5163A15 | Attach coral plates to coral plate baseplates Per unit: 2 |
Install & Tools: Round Bend-and-Stay Multipurpose Stainless Steel Wire, 0.012" diameter, 645 feet | McMaster | 9882K35 | Wire for mousing stainless shackles Per unit: 1 |
Main structure: S1 Struts – Structural FRP Fiberglass Square Tube, 2" Wide x 2" High Outside, 1/4" Wall Thickness | McMaster | 8548K34 | Fiberglass S1 Struts. Cut to 20.905" long (531 mm), drill bolt holes (bit – 7/32"), fill w/ divinycell foam & epoxy. See Supplemental File 1-Figure SI 9 Per unit: 55 Refers to drawing: Yes |
Main structure: S1 Struts (SS) – Corrosion-Resistant 316/316L Stainless Steel Rectangular Tube, 0.12" Wall Thickness, 2" x 2" Outside | McMaster | 2937K17 | Stainless S1 Struts. Cut to 20.905" long (531 mm), drill bolt holes (bit – 1/4"). See Supplemental File 1-Figure SI 9. Per unit: 5 Refers to drawing: Yes |
Main structure: S2 Struts – Structural FRP Fiberglass Square Tube, 2" Wide x 2" High Outside, 1/4" Wall Thickness | McMaster | 8548K34 | Fiberglass S2 Struts. Cut to 24.331" long (618 mm), drill bolt holes (bit – 7/32"), fill w/ divinycell foam & epoxy. See Supplemental File 1-Figure SI 9. Per unit: 60 Refers to drawing: Yes |
Anchor system: Skrew SK2500 | Spade Anchor USA | SK2500 | Two-plate sand screw anchors Per unit: 3 |
Coral plates: Stainless Steel Washers for 1/4" Screw Size, 0.281" ID, 0.625" OD | McMaster | 90107A029 | Numbered tags for coral plates. Stamp SS washers with numbered stamps and glue to coral plate for later ID. Per unit: 100 |
Main structure: Structural FRP Fiberglass Rod, 10 Feet Long, 1" Diameter | McMaster | 8543K26 | Central fiberglass rod, cut to Ark diameter Per unit: 1 |
ARMS attachments: Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screw, 1/2"-13 Thread Size, 1-3/4" Long | McMaster | 93190A718 | Bolts for attaching ARMS to ARMS mounting baseplates (4 per unit) Per unit: 40 |
Coral plate attach: Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screw, 1/4"-20 Thread Size, 2" Long, Fully Threaded | McMaster | 93190A550 | Bolts to attach coral plates to baseplates Per unit: 80 |
ARMS Baseplates: Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screw, 1/4"-20 Thread Size, 3-1/2" Long | McMaster | 92186A556 | Bolts for attaching ARMS mounting baseplates to struts Per unit: 40 |
Coral plate baseplates: Super-Corrosion-Resistant 316 Stainless Steel Hex Head Screw, 1/4"-20 Thread Size, 3" Long, Partially Threaded | McMaster | 92186A554 | Bolts for attaching coral plate baseplates to struts Per unit: 160 |
Buoyancy: TFLOAT 14" CENTERHOLE OR 437FM, modified | Seattle Marine | YUN12B-8 | 14" trawl floats for mounting to Stars. Slide fiberglass rod with heat shrink through trawl float. Add stainless washer and fiberglass hex nut on both sides. Seal washers with 3M 5200. Tighten nuts down. See Supplemental File 1-Figure SI 16. Per unit: 11 Refers to drawing: Yes |
Buoyancy: TFLOAT 14" CENTERHOLE OR 437FM, unmodified | Seattle Marine | YUN12B-8 | 14" trawl float Per unit: 2 |
ARMS Baseplates: Thick-Wall Dark Gray PVC Pipe for Water, Unthreaded, 1/4 Pipe Size, 5 Feet Long | McMaster | 48855K41 | Star standoffs for attaching ARMS mounting baseplates to Stars. Cut to 1.75" long sections. Per unit: 40 |
Coral plates: Unfilled, Natural Travertine Flooring Tile, 16" x 16" | Home Depot | 304540080 | Limestone tiles for coral plates. Cut to 9" x 9" tiles using wet tile saw. Per unit: 20 |
Buoyancy: Vibration-Damping Routing Clamp, Weld mount, Polypropylene with Stainless Steel Plates, 1" ID | McMaster | 3015T47 | Attachment for central rod and float Per unit: 1 |
Buoyancy: Water- and Steam-Resistant Fiberglass Washer for 1" Screw Size, 1.015" ID, 1.755" OD | McMaster | 93493A110 | Fiberglass washers for securing fiberglass threaded rods into trawl floats Per unit: 20 |
Install & Tools: Zinc-Galvanized Steel Wire, 0.014" diameter, 475 feet long | McMaster | 8872K19 | Wire for mousing galvanized shackles Per unit: 1 |
Two Platform Ark | |||
Downline: 1" Nylon, 15' length thimble-to-thimble with SS Sailmaker Thimble spliced at top, galvanized thimble spliced at bottom | West Marine | Custom | Runs from bottom of swivel shackle (SS) to top of anchor system (galvanized) Per unit: 1x |
Downline: 1/2" Spectra Rope with SS316 Sailmakers Thimbles Spliced at Top and Bottom | West Marine | Custom | Runs from bottom of Ark to top of swivel shackle. Per unit: 2x |
Buoyancy: 1/2" Spectra Rope with SS316 Sailmakers Thimbles Spliced at Top and Bottom | West Marine | Custom | Connects mooring buoy to top eye on Ark Per unit: 2x |
Main structure: 3/8 x 36 Inch SS Thimble Eye Swages and 5/8 Jaw-Jaw Turnbuckle Cable Assembly | Pacific Rigging & Loft | Custom | Custom rigging system with turnbuckle, 3/8" SS wire rope swaged into PVC end caps Per unit: 1x |
Main structure: 304 SS U-Bolt with Mounting Plate, 1/4"-20, 2" ID | McMaster Carr | 8896T123 | For joining fiberglass platforms using I-beams Per unit: 10x |
Main structure: 316 SS Hex Nut, 1/4"-20 | McMaster Carr | 94804A029 | For locking struts in hubs Per unit: 120x |
Main structure: 316 SS Nylon-Insert Locknut, 1/4"-20 | McMaster Carr | 90715A125 | For locking struts in hubs Per unit: 240x |
Main structure: 316 SS Pan Head Phillips Screw, 1/4"-20 Thread, 2.5" Long | McMaster Carr | 91735A384 | For locking struts in hubs Per unit: 120x |
Downline: 316 SS Safety-Pin Shackle, 1/2" Thick | McMaster Carr | 3860T25 | Connect Ark bottom eye to 1/2" Spectra rope. Per unit: 1x |
Buoyancy: 316 SS Safety-Pin Shackle, 1/2" Thick | McMaster Carr | 3860T25 | Connects bottom of 1/2" rope to top Ark eye Per unit: 2x |
Buoyancy: 316 SS Safety-Pin Shackle, 7/16" Thick | McMaster Carr | 3860T24 | Connects mooring buoy to 1/2" rope Per unit: 2x |
Install & Tools: Arbor with 7/16" Hex for 1-1/2" Diameter Hole Saw | McMaster Carr | 4066A63 | Drill holes in 6" PVC (Hubs) Per unit: 1x |
Main structure: Clamping U-bolt, 304 SS, 1/4"-20 Thread Size, 9/16" ID | McMaster Carr | 3042T149 | For clamping SS wire rope at Ark vertices Per unit: 15x |
Downline: Clevis-to-Clevis Swivel, 316 SS, 5-7/16" Long | McMaster Carr | 37405T28 | Swivel shackle between 1/2" spectra rope and 1" nylon downline Per unit: 1x |
Main structure: Corrosion-Resistant Wire Rope, 316 SS, 1/8" Thick | McMaster Carr | 8908T44 | String through assembled Ark and clamp at vertices Per unit: 250ft |
Main structure: Fiberglass Molded Grating, Square Grid, 1" Grid Height, 1-1/2" x 1-1/2" Square Grid, Grit Surface, 70% Open Area | McNichols | MS-S-100 | Cut to half pentagon shape, mirror images. See Figure S23. Per unit: 2x Refers to drawing: Yes |
Anchor system: Galvanized Alloy Steel Screw-Pin Shackle, 1/2" Thick | McMaster Carr | 3663T42 | Connects base of 1" nylon downline to anchor chain Per unit: 1x |
Anchor system: Galvanized Alloy Steel Screw-Pin Shackle, 3/8" Thick | McMaster Carr | 3663T51 | Connects anchor chain together Per unit: 1x |
Anchor system: Grade 30 Chain, Galvanized Steel, 1/4 Trade Size | McMaster Carr | 3592T45 | Anchor chain |
Install & Tools: HARKEN–57 mm Carbo Air Triple Block | West Marine | 200076 | Top of block and tackle Per unit: 1x |
Install & Tools: HARKEN–57 mm Carbo Air Triple Block with Becket and Cam | West Marine | 1171644 | Base of block and tackle Per unit: 1x |
Install & Tools: Hole Saw, 1-15/16" Cutting Depth, 1-1/2" Diameter | McMaster Carr | 4066A27 | Drill holes in 6" PVC (Hubs) Per unit: 1x |
Install & Tools: Low Pressure Inflator Nozzle | Amazon (Made by Trident) | B00KAI940E | Inflate mooring buoys underwater Per unit: 1x |
Install & Tools: LOW-STRETCH ROPE, 7/16" DIAMETER | McMaster | 3789T25 | Rope for block and tackle Per unit: 100ft |
Main structure: Nylon Cable Ties, UV Resistant Heavy Duty, 19" long, 250 lb strength | CableTiesAndMore | CT19BK | Use to secure platforms to Ark framework Per unit: 30x |
Install & Tools: Phillips Screwdriver, Size No. 3 | McMaster Carr | 5682A29 | For locking struts in hubs Per unit: 1x |
Buoyancy: Polyform Buoy, A-5 Series All-Purpose Buoy, 27" | West Marine (Made by PolyformUS) | 11630142 | Mooring buoy for buoyancy. Per unit: 2x |
Main structure: PVC Pipe, Schedule 80, 1" diameter | McMaster Carr | 48855K13 | Struts. Cut to 1.2 m (4 ft) lengths, drill to accommodate bolts Per unit: 30x |
Main structure: PVC Pipe, Schedule 80, 6" diameter | McMaster Carr | 48855K42 | Hubs. Cut into 4" lengths, drill 5 holes symmetrically around midline using 1-1/2" hole saw. See Supplemental File 1-Figure S22. Per unit: 12x Refers to drawing: Yes |
Main structure: PVC Thick Wall Pipe Fitting, End Cap, Schedule 80, 6 " diameter, Female | PRMFiltration (Made by ERA) | PVC80CAP600X | End caps for top and bottom of Ark. Cut off bottom 2 inches. Per unit: 2x |
Install & Tools: Ratcheting Combination Wrench, 7/16" | McMaster Carr | 5163A15 | For locking struts in hubs Per unit: 1x |
Install & Tools: Ratcheting PVC Cutter, 1-1/4" | McMaster Carr | 8336A11 | Cut 1" PVC into struts Per unit: 1x |
Main structure: Ring, 18-8 SS, for 5/32 Chain Trade Size, 3/4" Inside Length | McMaster Carr | 3769T71 | Substitute for 1/2" SS wire rope clamps. Per unit: 12x |
Install & Tools: Round Bend-and-Stay Multipurpose Stainless Steel Wire, 0.012" diameter, 645 feet | McMaster | 9882K35 | Wire for mousing stainless shackles Per unit: 1 |
Main structure: Structural FRP Fiberglass I-Beam, 1/4" Wall Thickness, 1-1/2" Wide x 3" High, 5 ft long | McMaster Carr | 9468T41 | Cut to 5 1-ft long sections. Per unit: 1x |
Install & Tools: Underwater Lift Bag, 220 lbs Lift Capacity | Subsalve Commercial | C-200 | Transport Ark to deployment site Per unit: 1x |
Install & Tools: Zinc-Galvanized Steel Wire, 0.014" diameter, 475 feet long | McMaster | 8872K19 | Wire for mousing galvanized shackles Per unit: 1x |
Strain Gauge | |||
316 Stainless Steel Eyebolt, for Lifting, M16 x 2 Thread Size, 27 mm Thread Length | McMaster Carr | 3130T14 | For strain gauge eyebolts Per unit: 2x |
Bridge101A Data Logger, 30 mV | MadgeTech | Bridge101A-30 | Collect voltage data from load cell. Per unit: 1x |
Chemical-Resistant PVC Rod, 2" Diameter | McMaster Carr | 8745K26 | For datalogger housing endcap. See Supplemental File 1-Figure S32. Per unit: 1x Refers to drawing: Yes |
Clamping U-Bolt, 304 SS, 5/16"-18 Thread Size, 1-3/8" ID | McMaster Carr | 3042T154 | For attachment of datalogger housing to strain gauge. Per unit: 1x |
Dow Corning Molykote 44 Medium Grease Lubricant | Amazon (Made by Dow Corning) | B001VY1EL8 | For mating male and female underwater connectors. Per unit: 1x |
STA-8 Stainless Steel S Type Tension and Compression Load Cell | LCM Systems | STA-8-1T-SUB | Load cell instrument for assessment of in-water weight. Per unit: 1x |
Standard-Wall Clear Blue Rigid PVC Pipe for Water, Unthreaded, 1-1/2 Pipe Size, 2 ft | McMaster Carr | 49035K47 | For datalogger housing. See Supplemental File 1-Figure S31. Per unit: 1x Refers to drawing: Yes |
Standard-Wall PVC Pipe Fitting for Water, Cap, White, 1-1/2 Pipe Size Socket Female | McMaster Carr | 4880K55 | For datalogger housing. Per unit: 2x |
Structural FRP Fiberglass Sheet, 12" Wide x 12" Long, 3/16" Thick | McMaster Carr | 8537K24 | For attachment of datalogger housing to strain gauge. Per unit: 1x |
SubConn Micro Circular Connector, Female, 4-port | McCartney (Made by SubConn) | MCBH4F | Install into machined housing endcap. Per unit: 1x |
SubConn Micro Circular Connector, Male, 4-contact | McCartney (Made by SubConn) | MCIL4M | Splice to load cell wiring and waterproof connection. Per unit: 1x |
Threadlocker, Loctite 262, 0.34 FL. oz Bottle | McMaster Carr | 91458A170 | For strain gauge eyebolts Per unit: 1x |
Vibration-Damping Routing Clamp, Weld-Mount, Polypropylene with Zinc-Plated Steel Top Plate, 1-7/8" ID | McMaster Carr | 3015T39 | For attachment of datalogger housing to strain gauge. Per unit: 1x |