Die Fähigkeit von Bakteriophagen, DNA zwischen Bakterienzellen zu bewegen, macht sie zu wirksamen Werkzeugen für die genetische Manipulation ihrer bakteriellen Wirte. Hier wird eine Methodik zur Induktion, Wiederherstellung und Verwendung von φBB-1, einem Bakteriophagen von Borrelia burgdorferi, vorgestellt, um heterologe DNA zwischen verschiedenen Stämmen der Lyme-Borreliose Spirochäte zu transduzieren.
Das Einbringen von Fremd-DNA in die Spirochäte Borrelia burgdorferi erfolgte fast ausschließlich durch Umwandlung mittels Elektroporation. Dieser Prozess hat deutlich geringere Wirkungsgrade in der Lyme-Borreliose-Spirochäte im Vergleich zu anderen, besser charakterisierten gramnegativen Bakterien. Die Erfolgsrate der Transformation hängt stark von konzentrierten Mengen hochwertiger DNA aus spezifischen Hintergründen ab und unterliegt einer signifikanten Variabilität von Stamm zu Stamm. Alternative Mittel zum Einbringen fremder DNA (d.h. Shuttle-Vektoren, fluoreszierende Reporter und Antibiotikaresistenzmarker) in B. burgdorferi könnten eine wichtige Ergänzung zum Arsenal nützlicher Werkzeuge für die genetische Manipulation der Lyme-Borreliose-Spirochäte sein. Bakteriophagen sind als natürliche Mechanismen für die Bewegung von DNA zwischen Bakterien in einem Prozess namens Transduktion anerkannt. In dieser Studie wurde eine Methode entwickelt, um den ubiquitären Borrelialphagen φBB-1 zu verwenden, um DNA zwischen B. burgdorferi-Zellen mit demselben und unterschiedlichem genetischen Hintergrund zu transduzieren. Die transduzierte DNA umfasst sowohl borreliale DNA als auch heterologe DNA in Form von kleinen Shuttle-Vektoren. Diese Demonstration legt eine mögliche Verwendung der Phagen-vermittelten Transduktion als Ergänzung zur Elektroporation für die genetische Manipulation der Lyme-Borreliose-Spirochäte nahe. Dieser Bericht beschreibt Methoden zur Induktion und Reinigung von Phage φBB-1 aus B. burgdorferi, die Verwendung dieses Phagens in Transduktionsassays und die Auswahl und das Screening potenzieller Transduktanten.
Die Entwicklung von Werkzeugen zur genetischen Manipulation des Spirochätenbakteriums Borrelia burgdorferi hat dem Verständnis der Natur der Borreliose 1,2,3,4 einen unermesslichen Mehrwert verliehen. B. burgdorferi hat ein ungewöhnlich komplexes Genom, das aus einem kleinen linearen Chromosom und sowohl linearen als auch zirkulären Plasmiden besteht 5,6. Spontaner Plasmidverlust, intragene Umlagerung (Bewegung von Genen von einem Plasmid zum anderen innerhalb desselben Organismus) und horizontaler Gentransfer (HGT, die Bewegung von DNA zwischen zwei Organismen) haben zu einer schwindelerregenden genetischen Heterogenität bei B. burgdorferi geführt (als Beispiel siehe Schutzer et al.7). Die resultierenden Genotypen (oder “Stämme”) sind alle Mitglieder derselben Art, haben aber genetische Unterschiede, die ihre Fähigkeit beeinflussen, verschiedene Säugetierwirte zu übertragen und zu infizieren 8,9,10,11. In diesem Bericht wird der Begriff “Stamm” verwendet, um sich auf B. burgdorferi mit einem bestimmten natürlichen genetischen Hintergrund zu beziehen; Der Begriff “Klon” wird verwendet, um sich auf einen Stamm zu beziehen, der für einen bestimmten Zweck oder als Ergebnis experimenteller Manipulation genetisch verändert wurde.
Die molekulare Toolbox, die für den Einsatz in B. burgdorferi zur Verfügung steht, umfasst selektierbare Marker, Genreporter, Shuttle-Vektoren, Transposon-Mutagenese, induzierbare Promotoren und gegenselektierbare Marker (für eine Übersicht siehe Drektrah und Samuels12). Die effektive Anwendung dieser Methoden erfordert die künstliche Einführung heterologer (fremder) DNA in einen interessierenden B. burgdorferi-Stamm. Bei B. burgdorferi erfolgt die Einführung heterologer DNA fast ausschließlich durch Elektroporation, eine Methode, die einen Stromimpuls verwendet, um eine Bakterienmembran vorübergehend durchlässig für kleine DNA-Stücke zu machen, die in das Medium eingebracht werden1. Die Mehrheit der Zellen (geschätzt ≥99,5%) wird durch den Puls abgetötet, aber die verbleibenden Zellen haben eine hohe Häufigkeit, die heterologe DNAzu behalten 13. Obwohl sie als eine der effizientesten Methoden zur Einführung von DNA in Bakterien gilt, ist die Häufigkeit der Elektroporation in B. burgdorferi sehr gering (von 1 Transformator in 5 × 104 bis 5 × 106 Zellen)13. Die Hindernisse für das Erreichen höherer Transformationsfrequenzen scheinen sowohl technischer als auch biologischer Natur zu sein. Technische Hindernisse für die erfolgreiche Elektroporation von B. burgdorferi umfassen sowohl die Menge an DNA>, die notwendig ist, als auch die Anforderung der Spirochäten, sich in genau der richtigen Wachstumsphase (Mitte log, zwischen 2 × 10 7 Zellen·mL−1 und 7 × 107 Zellen·ml−1) bei der Herstellung elektrokompetenter Zellen12,13 zu befinden. Diese technischen Barrieren sind jedoch möglicherweise leichter zu überwinden als die biologischen Barrieren.
Borreliose-Forscher erkennen, dass B. burgdorferi-Klone in Bezug auf ihre Fähigkeit, genetisch manipuliert zu werden, in zwei große Kategorien unterteilt werden können13,14. Laborangepasste Isolate mit hoher Passage sind oft leicht transformierbar, haben aber in der Regel die für die Infektiosität essentiellen Plasmide verloren, verhalten sich physiologisch abweichend und sind nicht in der Lage, einen Säugetierwirt zu infizieren oder innerhalb eines Zeckenvektors zu persistieren12,13. Während diese Klone nützlich waren, um die Molekularbiologie der Spirochäte im Labor zu sezieren, sind sie für die Untersuchung der Spirochäte im biologischen Kontext des enzootischen Zyklus von geringem Wert. Infektiöse Isolate mit geringer Passage hingegen verhalten sich physiologisch und spiegeln einen infektiösen Zustand wider und können den Infektionszyklus abschließen, sind aber in der Regel widerspenstig gegenüber der Einführung heterologer DNA und daher für Studie12,13 schwer zu manipulieren. Die Schwierigkeit bei der Umwandlung von Isolaten mit geringer Passage hängt mit mindestens zwei verschiedenen Faktoren zusammen: (i) Isolate mit niedriger Passage verklumpen oft fest, insbesondere unter den für die Elektroporation erforderlichen Bedingungen mit hoher Dichte, wodurch viele Zellen entweder die vollständige Anwendung der elektrischen Ladung oder den Zugang zur DNA in den Medien blockieren13,15; und (ii) B. burgdorferi kodiert mindestens zwei verschiedene plasmidgetragene Restriktionsmodifikationssysteme (R-M), die in Hochpassageisolaten verloren gehen können14,16. R-M-Systeme haben sich entwickelt, damit Bakterien fremde DNA erkennen und eliminieren können17. Tatsächlich haben mehrere Studien an B. burgdorferi gezeigt, dass die Transformationseffizienz zunimmt, wenn die Quelle der DNA B. burgdorferi und nicht Escherichia coli13,16 ist. Leider ist der Erwerb der erforderlichen hohen DNA-Konzentration für die Elektroporation von B. burgdorferi eine teure und zeitaufwendige Angelegenheit. Ein weiteres potenzielles Problem bei der Elektropolierung und Auswahl von Isolaten mit geringer Passage ist, dass der Prozess Transformatoren zu bevorzugen scheint, die das kritische Virulenz-assoziierte Plasmid lp2514,18,19 verloren haben; Daher kann der Akt der genetischen Manipulation von B. burgdorferi-Isolaten mit geringer Passage durch Elektroporation für Klone selektieren, die für eine biologisch relevante Analyse innerhalb des enzootischen Zyklus nicht geeignet sind20. Angesichts dieser Probleme könnte ein System, in dem heterologe DNA elektrotransformiert in B. burgdorferi-Klone mit hoher Passage und dann durch eine andere Methode als die Elektroporation in infektiöse Isolate mit geringer Passage übertragen werden könnte, eine willkommene Ergänzung der wachsenden Sammlung molekularer Werkzeuge sein, die für den Einsatz in der Lyme-Borreliose Spirochäte zur Verfügung stehen.
Neben der Transformation (der Aufnahme nackter DNA) gibt es zwei weitere Mechanismen, durch die Bakterien regelmäßig heterologe DNA aufnehmen: die Konjugation, d.h. der Austausch von DNA zwischen Bakterien in direktem physischen Kontakt miteinander, und die Transduktion, bei der es sich um den Austausch von DNA handelt, der durch einen Bakteriophagen vermitteltwird 21. Tatsächlich wurde die Fähigkeit von Bakteriophagen, HGT zu vermitteln, als experimentelles Werkzeug zur Analyse der molekularen Prozesse in einer Reihe von Bakteriensystemenverwendet 22,23,24. B. burgdorferi ist von Natur aus nicht für die Aufnahme nackter DNA zuständig, und es gibt wenig Hinweise darauf, dass B. burgdorferi den Apparat kodiert, der notwendig ist, um eine erfolgreiche Konjugation zu fördern. Frühere Berichte haben jedoch die Identifizierung und vorläufige Charakterisierung von φBB-1, einem gemäßigten Bakteriophagen von B. burgdorferi25,26,27,28, beschrieben. φBB-1 packt eine Familie von 30 kb Plasmiden, die in B. burgdorferi25 gefunden wurden; Die Mitglieder dieser Familie wurden als CP32S bezeichnet. In Übereinstimmung mit einer Rolle von φBB-1 bei der Teilnahme an HGT unter B. burgdorferi-Stämmen berichteten Stevenson et al. über ein identisches cp32, das in zwei Stämmen mit ansonsten unterschiedlichen cp32s gefunden wurde, was auf eine kürzliche Aufteilung dieses cp32 zwischen diesen beiden Stämmen hindeutet, wahrscheinlich über Transduktion29. Es gibt auch Hinweise auf eine signifikante Rekombination über HGT unter den cp32s in einem ansonsten relativ stabilen Genom30,31,32,33. Schließlich wurde die Fähigkeit von φBB-1, sowohl cp32s als auch heterologe Shuttle-Vektor-DNA zwischen Zellen desselben Stammes und zwischen Zellen zweier verschiedener Stämme zu transduzieren, zuvor nachgewiesen27,28. Aufgrund dieser Ergebnisse wurde φBB-1 als weiteres Werkzeug vorgeschlagen, das für die Zerlegung der Molekularbiologie von B. burgdorferi entwickelt werden soll.
Das Ziel dieses Berichts ist es, eine Methode zur Induktion und Reinigung von Phage φBB-1 aus B. burgdorferi zu beschreiben sowie ein Protokoll für die Durchführung eines Transduktionstests zwischen B. burgdorferi-Klonen und die Auswahl und das Screening potenzieller Transduktanten bereitzustellen.
Die Verwendung der Transduktion könnte eine Methode darstellen, um zumindest einige der biologischen und technischen Barrieren zu überwinden, die mit der Elektrotransformation von B. burgdorferi 1,4,13,37 verbunden sind. In vielen Systemen können Bakteriophagen Wirts-DNA (Nicht-Prophage) zwischen Bakterienzellen durch generalisierte oder spezialisierte Transduktion bewegen 22,23,24,…
The authors have nothing to disclose.
Der Autor dankt Shawna Reed, D. Scott Samuels und Patrick Secor für ihre nützliche Diskussion und Vareeon (Pam) Chonweerawong für ihre technische Unterstützung. Diese Arbeit wurde durch das Department of Biomedical Sciences und Forschungsstipendien der Fakultät an Christian H. Eggers von der School of Health Sciences der Quinnipiac University unterstützt.
1 L filter units (PES, 0.22 µm pore size) | Millipore Sigma | S2GPU10RE | |
12 mm x 75 mm tube (dual position cap) (polypropylene) | USA Scientific | 1450-0810 | holds 4 mL with low void volume (for induction) |
15 mL conical centrifuge tubes (polypropylene) | USA Scientific | 5618-8271 | |
1-methyl-3-nitroso-nitroguanidine (MNNG) | Millipore Sigma | CAUTION: potential carcinogen; no longer readily available, have not tested offered substitute | |
5.75" Pasteur Pipettes (cotton-plugged/borosilicate glass/non-sterile) | Thermo Fisher Scientific | 13-678-8A | autoclave prior to use |
50 mL conical centrifuge tubes (polypropylene) | USA Scientific | 1500-1211 | |
Absolute ethanol | |||
Agarose LE | Dot Scientific inc. | AGLE-500 | |
Bacto Neopeptone | Gibco | DF0119-17-9 | |
Bacto TC Yeastolate | Gibco | 255772 | |
Bovine serum albumin (serum replacement grade) | Gemini Bio-Products | 700-104P | |
Chloroform (for molecular biology) | Thermo Fisher Scientific | BP1145-1 | CAUTION: volatile organic; use only in a chemical fume hood |
CMRL-1066 w/o L-Glutamine (powder) | US Biological | C5900-01 | cell culture grade |
Erythromycin | Research Products International Corp | E57000-25.0 | |
Gentamicin reagent solution | Gibco | 15750-060 | |
Glucose (Dextrose Anhydrous) | Thermo Fisher Scientific | BP350-500 | |
HEPES | Thermo Fisher Scientific | BP310-500 | |
Kanamycin sulfate | Thermo Fisher Scientific | 25389-94-0 | |
Millex-GS (0.22 µM pore size) | Millipore Sigma | SLGSM33SS | to filter sterilize antibiotics and other small volume solutions |
Mitomycin C | Thermo Fisher Scientific | BP25312 | CAUTION: potential carcinogen; use only in a chemical fume hood |
N-acetyl-D-glucosamine | MP Biomedicals, LLC | 100068 | |
Oligonucleotides (primers for PCR) | IDT DNA | ||
OmniPrep (total genomic extraction kit) | G Biosciences | 786-136 | |
Petri Dish (100 mm × 15 mm) | Thermo Fisher Scientific | FB0875712 | |
Petroff-Hausser counting chamber | Hausser scientific | HS-3900 | |
Petroff-Hausser counting chamber cover glass | Hausser scientific | HS-5051 | |
Polyethylene glycol 8000 (PEG) | Thermo Fisher Scientific | BP233-1 | |
Rabbit serum non-sterile trace-hemolyzed young (NRS) | Pel-Freez Biologicals | 31119-3 | heat inactivate as per manufacturer's instructions |
Semi-micro UV transparent cuvettes | USA Scientific | 9750-9150 | |
Sodium bicarbonate | Thermo Fisher Scientific | BP328-500 | |
Sodium chloride | Thermo Fisher Scientific | BP358-1 | |
Sodium pyruvate | Millipore Sigma | P8674-25G | |
Spectronic Genesys 5 | Thermo Fisher Scientific | ||
Streptomycin sulfate solution | Millipore Sigma | S6501-50G | |
Trisodium citrate dihydrate | Millipore Sigma | S1804-500G | sodium citrate for BSK |