Summary

农用塑料薄膜中微纳米塑料的成型,用于基础研究的就业

Published: July 27, 2022
doi:

Summary

我们使用机械铣削,研磨和成像分析的逐步过程来展示微塑料和纳米塑料(分别为MP和NP)的形成和尺寸表征。

Abstract

分散在农业生态系统中的微塑料(MP)和纳米塑料(NPs)可能对土壤和附近水道中的生物群构成严重威胁。此外,NPs吸附的农药等化学物质会损害土壤生物,并可能进入食物链。在这种情况下,农业上使用的塑料,如塑料地膜,对农业生态系统中的塑料污染有重大影响。然而,大多数关于命运和生态毒性的基础研究都使用理想化且代表性较差的MP材料,例如聚苯乙烯微球。

因此,如本文所述,我们开发了一种实验室规模的多步骤程序,以机械方式形成具有代表性的MP和NP进行此类研究。该塑料材料由市售的聚丁酸己二酸酯-共对苯二甲酸酯(PBAT)塑料地膜制备,该薄膜通过低温处理(CRYO)或环境风化(W)脆化,并由未经处理的PBAT颗粒制成。然后通过机械研磨处理塑料材料,形成尺寸为46-840μm的MP,模仿风和机械对塑料碎片的磨损。然后将国会议员筛分成几个尺寸部分,以便进行进一步分析。最后,对106 μm筛分进行湿法研磨,生成20-900 nm的NPs,该过程模仿了地面MP的缓慢尺寸减小过程。通过立体显微仪的图像分析确定了MP的尺寸和形状,并采用动态光散射(DLS)来评估NP的粒度,通过该过程形成的MP和NP具有不规则的形状,这与从农田中回收的MP的几何特性一致。总体而言,这种尺寸减小方法被证明对于形成由可生物降解塑料组成的MP和NP是有效的,例如聚己二酸丁二醇酯 – 共对苯二甲酸丁二醇酯(PBAT),代表用于农业特种作物生产的覆盖材料。

Introduction

近几十年来,全球塑料产量迅速增加,处置不当,塑料废物缺乏回收利用,导致环境污染,影响了海洋和陆地生态系统123。塑料材料对于当代农业至关重要,特别是种植蔬菜,小水果和其他特种作物。它们用作地膜、高低隧道覆盖物、滴灌带和其他应用,旨在提高作物产量和质量,降低生产成本,并促进可持续耕作方法45。然而,“塑料栽培”的不断扩大引起了人们对农业环境中塑料碎片的形成,分布和保留的担忧。在使用寿命期间通过环境退化引起的脆化过程之后,较大的塑料碎片形成微塑料和纳米塑料(MNPs),这些塑料碎片在土壤中持续存在 或通过水径 流和风迁移到相邻的水道678。环境因素,如通过阳光的紫外线(UV)辐射,水的机械力和生物因素触发环境分散塑料的塑料脆化,导致较大的塑料碎片分解成宏观或中胚层塑料颗粒910。进一步碎片化形成微塑料(MP)和纳米塑料(NPs),反映平均尺寸(公称直径; dp)分别为1-5000μm和1-1000nm11.然而,NPs的 dp 上限(即MP的下限)并未得到普遍同意,在几篇论文中,这被列为100 nm12

来自塑料废物的MNP对土壤健康和生态系统服务构成了新的全球威胁。与周围环境相比,国会议员从淡水中吸附重金属导致重金属浓度高出800倍13.此外,水生生态系统中的议员通过改变光渗透,导致氧气耗尽,并导致粘附在各种生物群中,包括渗透和积累在水生生物中,造成多种压力源和污染物14.

最近的研究表明,MNPs可以影响土壤地球化学和生物群系,包括微生物群落和植物151617。此外,NPs威胁到食物网17181920。由于MNP很容易在土壤中经历垂直和水平运输,它们可以将吸收的污染物(如杀虫剂,增塑剂和微生物)通过土壤带入地下水或水生生态系统,如河流和溪流21222324。传统的农用塑料,如地膜,由聚乙烯制成,使用后必须从田间取出,并在垃圾填埋场中处理。然而,不完全的去除导致大量的塑料碎片在土壤中积累92526。或者,土壤可生物降解的塑料覆盖物(BDM)被设计为在使用后耕种到土壤中,在那里它们会随着时间的推移而降解。然而,BDM暂时存在于土壤中,并逐渐降解并分裂成MP和NP927

目前的许多环境生态毒理学和命运研究都采用了理想化和非代表性的MP和NP模型材料。最常用的替代MNP是单分散聚苯乙烯微球或纳米球,它们不反映实际驻留在环境中的MNP1228。因此,选择不具代表性的国会议员和NP可能会导致不准确的测量和结果。由于缺乏用于陆地环境研究的适当模型ΜNPs,作者有动力用农用塑料制备此类模型。我们之前报道了通过塑料颗粒和薄膜材料的机械研磨和研磨从BDM和聚乙烯颗粒形成MNP,以及MNP29的尺寸和分子特性。目前的论文为制备MNP提供了更详细的方案,可以更广泛地应用于所有农用塑料,如地膜或其颗粒状原料(图1)。在这里,作为一个例子,我们选择了可生物降解聚合物聚对苯二甲酸丁二醇酯(PBAT)的地膜和球形颗粒来代表农用塑料。

Protocol

1. 通过低温预处理和碾磨加工塑料颗粒中的MP 注意:该方法基于其他地方描述的程序,采用由本研究29中使用的相同材料的PBAT薄膜组成。 称取约1克的聚合物颗粒样品,并转移到50 mL玻璃罐中。 将带有20目(840μm)筛的“矩形输送”管放在旋转切割机前面的槽中,并抬起输送管,直到它碰到停止销。 将玻璃板放在铣削室的?…

Representative Results

为了验证实验程序方法和分析,从颗粒和薄膜材料中形成MP和NP,并使用微观图像按尺寸和形状进行比较。 图1 中描述的方法从可生物降解的塑料颗粒和薄膜中有效地形成MP和NP;这是通过低温冷却、铣削、湿磨和表征实现的。对于环境风化的电影来说,前一步是不必要的,因为风化会引起脆化(Astner等人,未发表)。颗粒也直接进行研磨,无需低温预处理。研磨后,通过筛分?…

Discussion

该方法描述了最初在先前出版物29中描述的有效过程,以制备来自颗粒和覆盖膜的MNP用于环境研究。尺寸减小过程涉及低温冷却(仅适用于薄膜)、干磨和湿磨阶段,以制造模型MNP。我们已经应用这种方法从各种聚合物原料中制备MNP,包括低密度聚乙烯(LDPE),聚丁酸己二酸酯 – 共对苯二甲酸酯(PBAT)和聚乳酸(PLA)29 (Astner等人,手稿正在准备中)。然而,…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项研究由赫伯特农业学院,生物系统工程和土壤系以及田纳西大学诺克斯维尔分校的科学联盟资助。此外,作者非常感谢通过美国农业部拨款2020-67019-31167为这项研究提供的财务支持。用于制备基于PBAT的可生物降解地膜MNP的初始原料由BioBag美洲公司(美国佛罗里达州杜尼文)和莫比乌斯有限责任公司(田纳西州勒努瓦市)提供。

Materials

Aluminum dish, 150 mL  Fisher Scientific, Waltham, MA, USA 08-732-103 Drying of collected NPs
Aluminum dish, 500 mL VWR International, Radnor, PA, USA 25433-018 Collecting NPs after wet-grinding
Centrifuge Fisher Scientific, Waltham, MA, USA Centrific 228 Container for centrifugation
Delivery tube, #20, 840 µm Thomas Scientific, Swedesboro, NJ, USA 3383M30 Sieving of the first fraction during milling
Delivery tube, #60, 250 µm Thomas Scientific, Swedesboro, NJ, USA 3383M45 Sieving of the second fraction (3x)  during milling
Thermomixer,  5350 Mixer Eppendorf North America, Enfield, CT, USA 05-400-200 Analysis of sieving experiments
FT-IR Spectrum Two, spectrometer with attenuated total reflectance (ATR) Perkin Elmer, Waltham, MA, USA L1050228  Measuring FTIR spectra
Glass beaker, 1000 mL DWK Life Sciences, Milville, NJ, USA 02-555-113 Stirring of MPs-water slurry before grinding
Glass front plate Thomas Scientific, Swedesboro, NJ, USA 3383N55  Front cover plaste for Wiley Mini Mill
Glass jar, 50 mL Uline, Pleasant Prairie, WI, USA S-15846P Collective MPs after milling
Glove Box, neoprene Bel-Art-SP Scienceware, Wayne, NJ, USA BEL-H500290000 22-Inch, Size 10
Zetasizer Nano ZS 90 size analyzer Malvern Panalytical, Worcestershire, UK  Zetasizer Nano ZS Measuring nanoplastics dispersed in DI-water
Microscope camera Nikon, Tokyo, 108-6290, Japan Nikon Digital Sight 10 Combined with Olympus microscope to receive digital images
Microscope Olympus, Shinjuku, Tokyo, Japan Model SZ 61 Imaging of MPs
Nitrogen jar, low form dewar flasks Cole-Palmer, Vernon Hills, IL, USA UX-03771-23 Storage of liquid nitrogen during cryogenic cooling
Accurate Blend 200, 12-speed blender Oster, Boca Raton, FL, USA 6684 Initiating the size reduction of cryogenically treated plastic film
PBAT film, – BioAgri™ (Mater-Bi®) BioBag Americas, Inc, Dunedin, FL, USA 0.7 mm thick Feedstock to form MPs and NPs, agricultural mulch film
PBAT pellets Mobius, LLC, Lenoir City, TN, USA Diameter 3 mm Feedstock to form microplastics (MPs) and nanoplastics (NPs) trough milling and grinding
Plastic centrifuge tubes, 50 mL Fisher Scientific, Waltham, MA, USA 06-443-18 Centrifugation of slurry after wet-grinding
Plastic jar, 1000 mL, pre-cleaned, straight sided Fisher Scientific, Waltham, MA, USA 05-719-733 Collection of NPs during and after wet grinding
Polygon stir bars, diameterø=8 mm, length=50.8 mm   Fisher Scientific, Waltham, MA, USA 14-512-127 Stirring of MPs slurry prior to wet-grinding
Scissors, titanium bonded Westcott, Shelton, CT, USA 13901 Cutting of initial PBAT film feedstocks
Square glass cell with square aperture and cap, 12 mm O.D. Malvern Panalytical, Worcestershire, UK  PCS1115 Measuring of NPs particle size
Stainless steel bottom, 3 inch, pan Hogentogler & Co. Inc, Columbia, MD, USA 8401 For sieving after Wiley-milling
Stainless steel sieve, 3 inch, No. 140 (106 µm) Hogentogler & Co. Inc, Columbia, MD, USA 1308 For sieving after Wiley-milling
Stainless steel sieve, 3 inch, No. 20 (850 µm) Hogentogler & Co. Inc, Columbia, MD, USA 1296 Sieving of MPs after Wiley-milling
Stainless steel sieve, 3 inch, No. 325 (45 µm) Hogentogler & Co. Inc, Columbia, MD, USA 1313 Sieving of MPs after Wiley-milling
Stainless steel sieve, 3 inch, No. 60 (250 µm) Hogentogler & Co. Inc, Columbia, MD, USA 1303 Sieving of MPs after Wiley-milling
Stainless steel top cover, 3 inch Hogentogler & Co. Inc, Columbia, MD, USA 8406 Sieving of MPs after Wiley-milling
Stainless steel tweezers Global Industrial, Port Washington, NY, USA T9FB2264892 Transferring of  frozen film particles from jar into blender
Vacuum oven, model 281A Fisher Scientific, Waltham, MA, USA 13-262-50 Vacuum oven to dry NPs after wet-grinding
Friction grinding machine, Supermass Colloider Masuko Sangyo, Tokyo, Japan MKCA6-2J Grinding machine to form NPs from MPs
Wet-grinding stone, grit size: 297 μm -420 μm Masuko Sangyo, Tokyo, Japan MKE6-46DD Grinding stone to form NPs from MPs
Wiley Mini Mill, rotary cutting mill Thomas Scientific, Swedesboro, NJ, USA NC1346618 Size reduction of pellets and film into MPs and NPs
Software
FTIR-Spectroscopy software Perkin Elmer, Waltham, MA, USA Spectrum 10  Collection of spectra from the initial plastic, MPs and NPs
Image J, image processing program National Institutes of Health, Bethesda, MD, USA Version 1.53n Analysis of digital images received from microscopy 
Microscope software, ds-fi1 software Malvern Panalytical , Malvern, UK Firmware DS-U1 Ver3.10 Recording of digital images
Microsoft, Windows,  Excel 365, spreadsheet software Microsoft, Redmond, WA, USA Office 365 Calculating the average particle size and creating FTIR spectra images
JMP software, statistical software SAS Institute Inc., Cary, NC, 1989-2021 Version 15 Statistical analysis of particle size and perform best fit of data set
Unscrambler software Camo Analytics, Oslo, Norway Version 9.2 Normalizing and converting FTIR spectra into .csv fromat

Referencias

  1. Jin, Z., Dan, L. Review on the occurrence, analysis methods, toxicity and health effects of micro-and nano-plastics in the environment. Environmental Chemistry. (1), 28-40 (2021).
  2. Kumar, M., et al. Current research trends on micro-and nano-plastics as an emerging threat to global environment: a review. Journal of Hazardous Materials. 409, 124967 (2021).
  3. Alimba, C. G., Faggio, C., Sivanesan, S., Ogunkanmi, A. L., Krishnamurthi, K. Micro (nano)-plastics in the environment and risk of carcinogenesis: Insight into possible mechanisms. Journal of Hazardous Materials. 416, 126143 (2021).
  4. Serrano-Ruiz, H., Martin-Closas, L., Pelacho, A. M. Biodegradable plastic mulches: Impact on the agricultural biotic environment. Science of The Total Environment. 750, 141228 (2021).
  5. Hayes, D. G., et al. Biodegradable plastic mulch films for sustainable specialty crop production. Polymers for Agri-Food Applications. , 183-213 (2019).
  6. Viaroli, S., Lancia, M., Re, V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review. Science of The Total Environment. , 153851 (2022).
  7. Rillig, M. C., Lehmann, A. Microplastic in terrestrial ecosystems. Science. 368 (6498), 1430-1431 (2020).
  8. Anunciado, M. B., et al. Effect of environmental weathering on biodegradation of biodegradable plastic mulch films under ambient soil and composting conditions. Journal of Polymers and the Environment. 29 (9), 2916-2931 (2021).
  9. Yang, Y., et al. Kinetics of microplastic generation from different types of mulch films in agricultural soil. Science of The Total Environment. 814, 152572 (2022).
  10. Hayes, D. G., et al. Effect of diverse weathering conditions on the physicochemical properties of biodegradable plastic mulches. Polymer Testing. 62, 454-467 (2017).
  11. Schwaferts, C., Niessner, R., Elsner, M., Ivleva, N. P. Methods for the analysis of submicrometer-and nanoplastic particles in the environment. TrAC Trends in Analytical Chemistry. 112, 52-65 (2019).
  12. Gigault, J., et al. Current opinion: what is a nanoplastic. Environmental Pollution. 235, 1030-1034 (2018).
  13. Naqash, N., Prakash, S., Kapoor, D., Singh, R. Interaction of freshwater microplastics with biota and heavy metals: a review. Environmental Chemistry Letters. 18 (6), 1813-1824 (2020).
  14. Manzoor, S., Naqash, N., Rashid, G., Singh, R. Plastic material degradation and formation of microplastic in the environment: A review. Materials Today: Proceedings. , 3254-3260 (2022).
  15. de Souza Machado, A. A., et al. Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology. 52 (17), 9656-9665 (2018).
  16. Jacques, O., Prosser, R. A probabilistic risk assessment of microplastics in soil ecosystems. Science of The Total Environment. 757, 143987 (2021).
  17. Kwak, J. I., An, Y. -. J. Microplastic digestion generates fragmented nanoplastics in soils and damages earthworm spermatogenesis and coelomocyte viability. Journal of Hazardous Materials. 402, 124034 (2021).
  18. Wahl, A., et al. Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere. 262, 127784 (2021).
  19. Vighi, M., et al. Micro and nano-plastics in the environment: research priorities for the near future. Reviews of Environmental Contamination and Toxicology Volume 257. , 163-218 (2021).
  20. Pironti, C., et al. Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics. 9 (9), 224 (2021).
  21. Zurier, H. S., Goddard, J. M. Biodegradation of microplastics in food and agriculture. Current Opinion in Food Science. 37, 37-44 (2021).
  22. Horton, A. A., Dixon, S. J. Microplastics: An introduction to environmental transport processes. Wiley Interdisciplinary Reviews: Water. 5 (2), 1268 (2018).
  23. Panno, S. V., et al. Microplastic contamination in karst groundwater systems. Groundwater. 57 (2), 189-196 (2019).
  24. Su, Y., et al. Delivery, uptake, fate, an transport of engineered nanoparticles in plants: a critical review and data analysis. Environmental Science: Nano. 6 (8), 2311-2331 (2019).
  25. Yu, Y., Griffin-LaHue, D. E., Miles, C. A., Hayes, D. G., Flury, M. Are micro-and nanoplastics from soil-biodegradable plastic mulches an environmental concern. Journal of Hazardous Materials Advances. 4, 100024 (2021).
  26. Hayes, D. G. Enhanced end-of-life performance for biodegradable plastic mulch films through improving standards and addressing research gaps. Current Opinion in Chemical Engineering. 33, 100695 (2021).
  27. Qin, M., et al. A review of biodegradable plastics to biodegradable microplastics: Another ecological threat to soil environments. Journal of Cleaner Production. 312, 127816 (2021).
  28. Phuong, N. N., et al. Is there any consistency between the microplastics found in the field and those used in laboratory experiments. Environmental Pollution. 211, 111-123 (2016).
  29. Astner, A., et al. Mechanical formation of micro-and nano-plastic materials for environmental studies in agricultural ecosystems. Science of The Total Environment. 685, 1097-1106 (2019).
  30. Rist, S., Hartmann, N. B. Aquatic ecotoxicity of microplastics and nanoplastics: lessons learned from engineered nanomaterials. Freshwater Microplastics. , 25-49 (2018).
  31. Schneider, C. A., Rasband, W. S., Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods. 9 (7), 671-675 (2012).
  32. Raju, S., et al. Improved methodology to determine the fate and transport of microplastics in a secondary wastewater treatment plant. Water Research. 173, 115549 (2020).
  33. Caputo, F., et al. Measuring particle size distribution and mass concentration of nanoplastics and microplastics: addressing some analytical challenges in the sub-micron size range. Journal of Colloid and Interface Science. 588, 401-417 (2021).
  34. Xu, M., et al. Polystyrene microplastics alleviate the effects of sulfamethazine on soil microbial communities at different CO2 concentrations. Journal of Hazardous Materials. 413, 125286 (2021).
  35. Ding, L., et al. Insight into interactions of polystyrene microplastics with different types and compositions of dissolved organic matter. Science of The Total Environment. 824, 153883 (2022).
  36. Abbasimaedeh, P., Ghanbari, A., O’Kelly, B. C., Tavanafar, M., Irdmoosa, K. G. Geomechanical behaviour of uncemented expanded polystyrene (EPS) beads-clayey soil mixtures as lightweight fill. Geotechnics. 1 (1), 38-58 (2021).
  37. Li, Z., Li, Q., Li, R., Zhou, J., Wang, G. The distribution and impact of polystyrene nanoplastics on cucumber plants. Environmental Science and Pollution Research. 28 (13), 16042-16053 (2021).
  38. Sobhani, Z., Panneerselvan, L., Fang, C., Naidu, R., Megharaj, M. Chronic and transgenerational effects of polystyrene microplastics at environmentally relevant concentrations in earthworms (Eisenia fetida). Environmental Toxicology and Chemistry. 40 (8), 2240-2246 (2021).
  39. Lionetto, F., Esposito Corcione, C., Rizzo, A., Maffezzoli, A. Production and characterization of polyethylene terephthalate nanoparticles. Polymers. 13 (21), 3745 (2021).
  40. Dümichen, E., et al. Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Research. 85, 451-457 (2015).
  41. Robotti, M., et al. Attrition and cryogenic milling production for low pressure cold gas spray and composite coatings characterization. Advanced Powder Technology. 27 (4), 1257-1264 (2016).
  42. Ducoli, S., et al. A different protein corona cloaks "true-to-life" nanoplastics with respect to synthetic polystyrene nanobeads. Environmental Science: Nano. 9 (4), 1414-1426 (2022).
  43. El Hadri, H., Gigault, J., Maxit, B., Grassl, B., Reynaud, S. Nanoplastic from mechanically degraded primary and secondary microplastics for environmental assessments. NanoImpact. 17, 100206 (2020).
  44. Eitzen, L., et al. The challenge in preparing particle suspensions for aquatic microplastic research. Environmental research. 168, 490-495 (2019).
  45. Ekvall, M. T., et al. Nanoplastics formed during the mechanical breakdown of daily-use polystyrene products. Nanoscale advances. 1 (3), 1055-1061 (2019).
  46. Caldwell, J., et al. Fluorescent plastic nanoparticles to track their interaction and fate in physiological environments. Environmental Science: Nano. 8 (2), 502-513 (2021).
  47. Zeb, A., et al. Evaluating the knowledge structure of micro-and nanoplastics in terrestrial environment through scientometric assessment. Applied Soil Ecology. 177, 104507 (2022).
  48. Ji, Z., et al. Effects of pristine microplastics and nanoplastics on soil invertebrates: A systematic review and meta-analysis of available data. Science of The Total Environment. 788, 147784 (2021).
  49. de Alkimin, G. D., Gonçalves, J. M., Nathan, J., Bebianno, M. J. Impact of micro and nanoplastics in the marine environment. Assessing the Effects of Emerging Plastics on the Environment and Public Health. , 172-225 (2022).
  50. Pires, A., Cuccaro, A., Sole, M., Freitas, R. Micro (nano) plastics and plastic additives effects in marine annelids: A literature review. Environmental Research. , 113642 (2022).
  51. Hurley, R. R., Nizzetto, L. Fate and occurrence of micro (nano) plastics in soils: Knowledge gaps and possible risks. Current Opinion in Environmental Science & Health. 1, 6-11 (2018).
check_url/es/64112?article_type=t

Play Video

Citar este artículo
Astner, A. F., Hayes, D. G., O’Neill, H. M., Evans, B. R., Pingali, S. V., Urban, V. S., Young, T. M. Forming Micro-and Nano-Plastics from Agricultural Plastic Films for Employment in Fundamental Research Studies. J. Vis. Exp. (185), e64112, doi:10.3791/64112 (2022).

View Video