Summary

使用力平台记录进行生物力学分析的步态起始姿势组织

Published: July 26, 2022
doi:

Summary

本文描述了用于研究步态起始的姿势组织的材料和方法。该方法基于力平台记录和力学的直接原理来计算重心和压力运动学中心。

Abstract

步态起始(GI)是正交姿势和稳态运动之间的瞬态阶段,是一项功能性任务和实验范式,文献中经典地用于深入了解身体运动和平衡控制的基本姿势机制。胃肠道调查也有助于更好地了解老年人和神经系统受试者(例如帕金森病患者)姿势性疾病的生理病理学。因此,它被认为具有重要的临床意义,特别是在预防跌倒方面。

本文旨在为学者、临床医生和高等教育学生提供有关通过生物力学 方法研究 胃肠道姿势组织的材料和方法的信息。该方法基于力平台记录和力学的直接原理来计算重心和压力中心的运动学。这两个虚拟点之间的相互作用是该方法的关键要素,因为它决定了稳定性和全身进展的条件。该协议涉及参与者最初以直立姿势站立不动,并开始行走直到至少 5 m 的轨道尽头。

建议改变胃肠道速度(慢,自发,快速)和颞压水平 – 步态可以在离开信号传递(高水平的颞压)或参与者感觉准备好时尽快开始(低水平颞压)。定义了用这种方法获得的生物力学参数(例如,预期姿势调整的持续时间和幅度、步长/宽、性能和稳定性),并详细说明了它们的计算方法。此外,还提供了在健康年轻人中获得的典型值。最后,讨论了该方法相对于替代方法(运动捕捉系统)的关键步骤、局限性和意义。

Introduction

步态起始 (GI) 是正交姿势和稳态运动之间的瞬态阶段,是一项功能性任务和实验范式,在文献中经典地用于研究需要同时全身推进和稳定性的复杂运动任务期间的姿势控制1。已知患有神经系统疾病(例如帕金森病2、中风3、进行性核上性麻痹4 和“更高水平的步态障碍”5)的患者难以开始步态,这使他们跌倒的风险增加。因此,基础科学和临床科学都必须开发概念和方法,以深入了解步态开始期间起作用的姿势控制机制,获得科学知识和更好地了解步态和平衡障碍的病理生理学,并能够通过适当的干预措施进行补救。

步态起始的生物力学组织的概念描述如下,旨在研究该组织的经典方法详见协议部分。GI可以细分为三个连续的阶段:“预期姿势调整”(APA)阶段对应于摆动脚跟脱落前全身发生的动态现象,“卸载”阶段(摆动脚跟脱落和脚趾脱落之间),以及在摆动脚接触支撑面时结束的“摆动”阶段。GI过程的这种经典细分源于Belenkii等人6等人7,8的开创性研究重点是在直立姿势中自愿举臂到水平时姿势和运动之间的协调。在这种范式中,直接参与手臂抬起的身体节段对应于“焦点”链,而插入焦点链近端部分和支撑面之间的身体节段对应于“姿势”链9。这些作者报告说,在举起手臂之前,姿势链中系统地出现了动态和肌电图现象,他们称之为“预期姿势调整”。对于胃肠道,摆动脚跟脱落(或摆动脚趾脱落,取决于作者)被认为是步态运动的开始10。因此,在此瞬间之前发生的动态现象对应于APA,并且摆动肢被认为是焦点链11的组成部分。这种说法与运动生物力学组织的经典概念一致,根据该概念,任何运动行为都必须涉及焦点和姿势成分1213

从生物力学的角度来看,与胃肠道相关的APA表现为压力中心的向后和中外侧(摆腿侧向)位移,其作用是推动重心向相反的方向 – 向前和朝向站立腿侧。预期后压位移中心越大,就脚接触时向前重心速度而言,电机性能越高1014.此外,通过将重心推向站立腿侧,APA 有助于在 GI1151617 的摆动阶段保持中侧稳定性。目前的文献强调,这种对稳定性的预期控制的改变是老年人跌倒的主要原因1。GI期间的稳定性已在文献中通过调整“稳定边际”18进行了量化,该量考虑了速度和重心在支撑底座内的位置。除了APA的发展外,据报道,在重力作用下GI摆动阶段重心下降被站立腿的三头肌主动制动。这种主动制动有助于在脚接触后保持稳定性,使脚平稳地落在支撑表面上4.

本文的目的是为学者、临床医生和高等教育学生提供有关我们实验室开发的材料和方法的信息,以通过生物力学方法 研究 胃肠道的姿势组织。这种“全局”方法(由于下面详述的原因,也可以同化为“动力学”方法)是由Brenière和合作者1019发起的。它基于力学的直接原理来计算重心的加速度以及压力中心的瞬时位置。这些点中的每一个都是特定于运动的全局表达式。

一个是与运动目的相关的所有身体部分运动的瞬时表达(重心;例如,GI期间身体的进展速度);另一个(压力中心)是实现这一目标所需的支持条件的表达。这两个点的瞬时位置反映了步态启动需要满足的姿势动力学条件。力平台是该模型的合适仪器,因为它允许直接测量运动过程中作用在支撑表面上的外力和力矩。它还允许执行自然运动,不需要特殊准备。

已知许多因素会影响胃肠道的姿势组织,包括生物力学、(神经)生理、心理、环境和认知因素120。本文重点介绍了两个因素的影响 – 胃肠道速度和时间压力 – 并提供了健康年轻人获得的典型值。

Protocol

下面描述的协议遵循巴黎萨克雷大学人类研究伦理委员会的指导方针。与会者批准并签署了同意书。 1. 参与者 在实验中包括至少15名健康的年轻成年参与者(年龄在20至40岁之间)。注意:这一推荐的受试者数量与地理标志文献中经典考虑的相对应。 排除有助行器、视觉、听力或骨科问题、已识别的神经系统疾病、痴呆、认知障碍(即迷你精神?…

Representative Results

描述步态启动期间从力平台获得的代表性生物力学时间图无论时间压力水平或胃肠道速度说明如何,在 APA 之前系统地进行摆动脚跟脱落。这些APA的特征是压力中心的向后和摆腿侧移(图2)。这种预期的压力转移中心促进了重心在相反方向(即向前和向站立腿侧)的加速。沿前后方向,重心速度逐渐增加,在摆动脚接触后不久达到峰值。沿着中外侧方向,重?…

Discussion

本文的目的是为学者、临床医生和高等教育学生提供有关我们实验室用于研究步态起始(GI)的生物力学组织的方法(“全球”方法)的信息。下面讨论协议的关键步骤、方法的局限性以及替代方法和应用。

该方案的一个关键步骤是检测胃肠道的时间事件(即 APA 发作、摆动脚跟脱落和脚趾脱落以及后足脱落)。与地理标志组织相关的时间和空间变量的值都取决于对这些事件?…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

作者要感谢ANRT和LADAPT。

Materials

Force platform(s) AMTI One large [120 cm x 60 cm] or two small [60 cm x 40 cm] force platform(s)
Python or Matlab Python or MathWorks Programming language for the computation of experimental variables
Qualisys track manage Qualisys Software for the synchronization of the force platform(s), the recording and the on-line visualization of raw biomechanical traces (3D forces and moments)
Visual3D C-Motion Inc Software for the processing of raw biomechanical traces (low-pass filtering)

Referencias

  1. Yiou, E., Caderby, T., Delafontaine, A., Fourcade, P., Honeine, J. L. Balance control during gait initiation, State-of-the-art and research perspectives. World Journal of Orthopedics. 8 (11), 815-828 (2017).
  2. Delval, A., Tard, C., Defebvre, L. Why we should study gait initiation in Parkinson’s disease. Neurophysiologie Clinique/Clinical Neurophysiology. 44 (1), 69-76 (2014).
  3. Delafontaine, A., et al. Anticipatory postural adjustments during gait initiation in stroke patients. Frontiers in Neurology. 10, 352 (2019).
  4. Welter, M. L., et al. Control of vertical components of gait during initiation of walking in normal adults and patients with progressive supranuclear palsy. Gait & Posture. 26 (3), 393-399 (2007).
  5. Demain, A., et al. High-level gait and balance disorders in the elderly, a midbrain disease. Journal of Neurology. 261 (1), 196-206 (2013).
  6. Belen’kiĭ, V. E., Gurfinkel’, V. S., Pal’tsev, E. I. On the control elements of voluntary movements. Biofizika. 12 (1), 135-141 (1967).
  7. Bouisset, S., Zattara, M. A sequence of postural movements precedes voluntary movement. Neuroscience Letters. 22 (3), 263-270 (1981).
  8. Bouisset, S., Zattara, M. Biomechanical study of the programming of anticipatory postural adjustments associated with voluntary movement. Journal of Biomechanics. 20 (8), 735-742 (1987).
  9. Bouisset, S., Do, M. C. Poster, dynamic stability, and voluntary movement. Neurophysiologie Clinique/Clinical Neurophysiology. 38 (6), 345-362 (2008).
  10. Brenière, Y., Cuong Do, M., Bouisset, S. Are dynamic phenomena prior to stepping essential to walking. Journal of Motor Behavior. 19 (1), 62-76 (1987).
  11. Memari, S., Yiou, E., Fourcade, P. The role(s) of "Simultaneous Postural Adjustments" (SPA) during Single Step revealed with the Lissajous method. Journal of Biomechanics. 108, 109910 (2020).
  12. Gelfand, I. M., Gurfinkel, V. S., Fomin, S. V., Tsetlin, M. L. . Models of the structural functional organization of certain biological systems. , 330-345 (1966).
  13. Hess, W. R. Teleokinetisches und ereismatisches Kräftesystem in der Biomotorik. Helv Physiol Pharmacol Acta. 1, 62-63 (1943).
  14. Lepers, R., Brenière, Y. The role of anticipatory postural adjustments and gravity in gait initiation. Experimental Brain Research. 107 (1), 118-124 (1995).
  15. Lyon, I. N., Day, B. L. Control of frontal plane body motion in human stepping. Experimental Brain Research. 115 (2), 345-356 (1997).
  16. Yang, F., Espy, D., Pai, Y. C. Feasible stability region in the frontal plane during human gait. Annals of Biomedical Engineering. 37 (12), 2606-2614 (2009).
  17. Zettel, J. L., McIlroy, W. E., Maki, B. E. Can stabilizing features of rapid triggered stepping reactions be modulated to meet environmental constraints. Experimental Brain Research. 145 (3), 297-308 (2002).
  18. Hof, A. L., Gazendam, M. G. J., Sinke, W. E. The condition for dynamic stability. Journal of Biomechanics. 38 (1), 1-8 (2005).
  19. Brenière, Y., Do, M. C. When and how does steady state gait movement induced from upright posture begin. Journal of Biomechanics. 19 (12), 1035-1040 (1986).
  20. Yiou, E., Hussein, T., LaRue, J. Influence of temporal pressure on anticipatory postural control of medio-lateral stability during rapid leg flexion. Gait & Posture. 35 (3), 494-499 (2012).
  21. Caderby, T., Yiou, E., Peyrot, N., Begon, M., Dalleau, G. Influence of gait speed on the control of mediolateral dynamic stability during gait initiation. Journal of Biomechanics. 47 (2), 417-423 (2014).
  22. Seuthe, J., D’Cruz, N., Ginis, P., et al. How many gait initiation trials are necessary to reliably detect anticipatory postural adjustments and first step characteristics in healthy elderly and people with Parkinson’s disease. Gait & Posture. 88, 126-131 (2021).
  23. Brenière, Y., Do, M. C. Control of Gait Initiation. Journal of Motor Behavior. 23 (4), 235-240 (1991).
  24. Caderby, T., Yiou, E., Peyrot, N., Bonazzi, B., Dalleau, G. Detection of swing heel-off event in gait initiation using force-plate data. Gait & Posture. 37 (3), 463-466 (2013).
  25. Yiou, E., Teyssèdre, C., Artico, R., Fourcade, P. Comparison of base of support size during gait initiation using force-plate and motion-capture system, A Bland and Altman analysis. Journal of Biomechanics. 49 (16), 4168-4172 (2016).
  26. Dalton, E., Bishop, M., Tillman, M. D., Hass, C. J. Simple change in initial standing position enhances the initiation of gait. Medicine and Science in Sports and Exercise. 43 (12), 2352-2358 (2011).
  27. Delafontaine, A., Gagey, O., Colnaghi, S., Do, M. C., Honeine, J. L. Rigid ankle foot orthosis deteriorates mediolateral balance control and vertical braking during gait initiation. Frontiers in Human Neuroscience. 11, 214 (2017).
  28. Delval, A., et al. Caractérisation des ajustements posturaux lors d’une initiation de la marche déclenchée par un stimulus sonore et autocommandée chez 20 sujets sains. Neurophysiologie Clinique/Clinical Neurophysiology. 35 (5-6), 180-190 (2005).
  29. Yiou, E., Fourcade, P., Artico, R., Caderby, T. Influence of temporal pressure constraint on the biomechanical organization of gait initiation made with or without an obstacle to clear. Experimental Brain Research. 234 (6), 1363-1375 (2015).
  30. Yiou, E., Artico, R., Teyssedre, C. A., Labaune, O., Fourcade, P. Anticipatory postural control of stability during gait initiation over obstacles of different height and distance made under reaction-time and self-initiated instructions. Frontiers in Human Neuroscience. 10, 449 (2016).
  31. Nouillot, P., Do, M. C., Bouisset, S. Are there anticipatory segmental adjustments associated with lower limb flexions when balance is poor in humans. Neuroscience Letters. 279 (2), 77-80 (2000).
  32. Sint, J. S. V. . Color Atlas of Skeletal Landmark Definitions: Guidelines for Reproducible Manual and Virtual Palpations. , 29 (2007).
  33. Tisserand, R., Robert, T., Dumas, R., Chèze, L. A simplified marker set to define the center of mass for stability analysis in dynamic situations. Gait & Posture. 48, 64-67 (2016).
  34. Langeard, A., et al. Kinematics or kinetics: Optimum measurement of the vertical variations of the center of mass during gait initiation. Sensors. 21 (23), 7954 (2021).
  35. Maki, B. E., Mcllroy, W. E. The control of foot placement during compensatory stepping reactions, does speed of response take precedence over stability. IEEE Transactions on Rehabilitation Engineering. 7 (1), 80-90 (1999).
  36. Lansade, C., et al. Estimation of the body center of mass velocity during gait of people with transfemoral amputation from force plate data integration. Clinical Biomechanics. 88, 105423 (2021).
  37. Yiou, E., Do, M. C. In a complex sequential movement, what component of the motor program is improved with intensive practice, sequence timing or ensemble motor learning. Experimental Brain Research. 137 (2), 197-204 (2001).
  38. Le Pellec, A., Maton, B. Anticipatory postural adjustments are associated with single vertical jump and their timing is predictive of jump amplitude. Experimental Brain Research. 129 (4), 0551-0558 (1999).
  39. Diakhaté, D. G., Do, M. C., Le Bozec, S. Effects of seat-thigh contact on kinematics performance in sit-to-stand and trunk flexion tasks. Journal of Biomechanics. 46 (5), 879-882 (2013).
  40. Yiou, E., Caderby, T., Hussein, T. Adaptability of anticipatory postural adjustments associated with voluntary movement. World Journal of Orthopedics. 3 (6), 75 (2013).
  41. Memari, S., Do, M. C., Le Bozec, S., Bouisset, S. The consecutive postural adjustments (CPAs) that follow foot placement in single stepping. Neuroscience Letters. 543, 32-36 (2013).
  42. Fourcade, P., Bouisset, S., Le Bozec, S., Memari, S. Consecutive postural adjustments (CPAs): A kinetic analysis of variable velocity during a pointing task. Neurophysiologie Clinique. 48 (6), 387-396 (2018).
  43. Zhou, H., Cen, X., Song, Y., Ugbolue, U. C., Gu, Y. Lower-limb biomechanical characteristics associated with unplanned gait termination under different walking speeds. Journal of Visualized Experiments. (162), e61558 (2020).
  44. Vialleron, T., et al. Acute effects of short-term stretching of the triceps surae on ankle mobility and gait initiation in patients with Parkinson’s disease. Clinical Biomechanics. 89, 105449 (2021).

Play Video

Citar este artículo
Simonet, A., Delafontaine, A., Fourcade, P., Yiou, E. Postural Organization of Gait Initiation for Biomechanical Analysis Using Force Platform Recordings. J. Vis. Exp. (185), e64088, doi:10.3791/64088 (2022).

View Video