Esta metodología, que incluyó la alimentación oral y la infección por inyección intratorácica, podría evaluar eficazmente la influencia de las barreras del intestino medio y/o de las glándulas salivales en la infección por arbovirus.
Los virus transmitidos por mosquitos (MBV), que son patógenos infecciosos para los vertebrados, se propagan por muchas especies de mosquitos, lo que representa una grave amenaza para la salud pública. Una vez ingeridos, los virus deben superar la barrera del intestino medio del mosquito para llegar a la hemolinfa, desde donde podrían propagarse a las glándulas salivales. Cuando un mosquito pica, estos virus se propagan a nuevos huéspedes vertebrados. Del mismo modo, el mosquito puede recoger diferentes virus. En general, solo una pequeña porción de virus puede ingresar a las glándulas salivales a través del intestino. La eficiencia de transmisión de estos virus a las glándulas se ve afectada por las dos barreras físicas que se encuentran en diferentes especies de mosquitos: las barreras del intestino medio y las barreras de las glándulas salivales. Este protocolo presenta un método para la detección del virus en las glándulas salivales de Aedes aegypti después de la alimentación oral y la infección por inyección intratorácica. Además, determinar si los intestinos y / o las glándulas salivales dificultan la propagación viral puede ayudar en las evaluaciones de riesgo de MBV transmitidos por Aedes aegypti.
Los virus transmitidos por mosquitos (MBV), un grupo heterogéneo de virus de ARN, pueden persistir en los mosquitos vectores y posteriormente propagarse a los huéspedes vertebrados1. Los MBV clínicamente importantes se distribuyen principalmente en cuatro familias de virus, a saber, Flaviviridae, Togaviridae, Reoviridae y Peribunyavividae 2,3. En las últimas décadas, estos virus se han reportado en todo el mundo, causando problemas de salud pública. Como uno de los MBV más conocidos, el virus del dengue (DENV) se ha convertido en el arbovirus emergente o reemergente más prevalente en más de 100 países durante los últimos 20 años4. Desde el descubrimiento del virus del Zika (ZIKV) en el interior, casi todos los países y territorios tropicales y subtropicales del continente han notificado infecciones humanas por ZIKV5. Con el fin de evaluar el riesgo de transmisión del virus, numerosos estudios en los últimos años se han centrado en la competencia del vector mosquito para estos virus 6,7. Como resultado, es fundamental prevenir y controlar eficazmente las enfermedades transmitidas por vectores.
Aedes aegypti (Ae. aegypti), uno de los mosquitos más fáciles de criar en el laboratorio, es un vector importante de DENV, ZIKV, virus Chikungunya (CHIKV) y virus de la fiebre amarilla (YFV)8. Durante mucho tiempo, Ae. aegypti se encontró únicamente en el continente africano y en el sudeste asiático, pero en los últimos años ha colonizado casi todos los continentes9. Además, la abundancia global de Ae. aegypti ha estado creciendo continuamente, con un aumento estimado del 20% para fines del siglo10. De 2004 a 2009 en China, hubo un aumento evidente en la competencia vectorial Ae. aegypti para DENV debido a temperaturas diarias más altas11. El estado de Ae. aegypti como vector patógeno ha aumentado significativamente en China. En consecuencia, para abordar estos desafíos, es necesario investigar la competencia vectorial de Ae. aegypti para transmitir virus.
Como artrópodo hematófago, el mosquito hembra perfora la piel de un huésped vertebrado y se alimenta de la sangre. Los mosquitos ocasionalmente adquieren virus de huéspedes infectados por virus y luego transfieren los virus a un nuevo huésped. Como tal, para determinar la competencia del vector, los mosquitos son alimentados con una harina de sangre artificial que contiene arbovirus a través de un sistema de alimentación en el entorno de laboratorio12. Los mosquitos individuales se separan en cabezas, cuerpos y secreciones de saliva varios días después de la infección. Para medir las tasas de infección, diseminación y transmisión del virus, se han detectado títulos de virus mediante PCR cuantitativa con transcripción inversa (qRT-PCR) o ensayo de placa. Sin embargo, no todos los mosquitos desarrollan infecciones del intestino medio y la capacidad de transferir un virus al siguiente huésped después de la alimentación con sangre. Está relacionado con las barreras fisiológicas de los mosquitos, que evitan que los patógenos penetren en el cuerpo y juegan un papel vital en su inmunidad innata13. Las barreras del intestino medio, en particular la barrera de infección del intestino medio (MIB) y la barrera de escape del intestino medio (MEB), influyen en si el virus podría infectar el vector sistémicamente y la eficiencia con la que se propaga. Obstruye el análisis de la infección de otros tejidos, como las glándulas salivales, que también presentan infección de las glándulas salivales y barreras de escape13,14. Para caracterizar mejor la infección del intestino medio y las glándulas salivales en el vector, se presenta aquí un protocolo detallado para la alimentación oral y la inoculación intratorácica de arbovirus en Ae. aegypti. Este protocolo podría aplicarse a infecciones adicionales por arbovirus en una variedad de mosquitos vectores, como la infección por DENV y ZIKV en Aedes spp., y podría resultar un procedimiento practicable.
El objetivo de este método era proporcionar una evaluación integral del riesgo de un virus transmitido por mosquitos mediante la evaluación de la competencia del vector a través de la alimentación oral y la inoculación intratorácica.
En el experimento de alimentación oral, los mosquitos hinchados deben ser recogidos y transferidos a un nuevo contenedor, lo que representa un grave riesgo para los operadores. La razón de esto es porque cualquier mosquito, incluidos los mosquitos no infe…
The authors have nothing to disclose.
Este trabajo fue apoyado por el Proyecto del Plan de Ciencia y Tecnología de Wuhan (2018201261638501).
Aedes aegypti | Rockefeller strain | ||
Automated nucleic acid extraction system | NanoMagBio | S-48 | |
BHK-21 cells | National Virus Resource Center, Wuhan Institute of Virology | ||
Buckets | |||
C6/36 cells | National Virus Resource Center, Wuhan Institute of Virology | ||
Carbon dioxide spray gun | wuhan Yihong | YHDFPCO2 | |
Centrifugal machine | Himac | CF16RN | |
CFX96 Touch Real-Time PCR Detection System | Bio-Rad | CFX96 Touch | |
Ebinur Lake virus | Cu20-XJ isolation | ||
Formaldehyde | Wuhan Baiqiandu | B0003 | |
Glove box | |||
Glucose | Hushi | 10010518 | |
Immersion oil | Cargille | 16908-1 | |
Insect incubator | Memmert | HPP750T7 | |
Low Temperature Tissue Homogenizer Grinding Machine | Servicebio | KZ-III-F | |
Magnetic Virus Genome Extraction Kit | NanoMagBio | NMG0966-16 | |
mesh cages (30 x 30 x 30 cm) | Huayu | HY-35 | |
methylcellulose | Calbiochem | 17851 | |
mice feedstuff powder | BESSN | BS018 | |
Microelectrode Puller | WPI | PUL-1000 | PUL-1000 is a microprocessor controlled horizontal puller for making glass micropipettes or microelectrodes used in intracellular recording, patch clamp studies, microperfusion or microinjection. |
Mosquito net meshes | |||
Nanoject III Programmable Nanoliter Injector | Drummond | 3-000-207 | |
One Step TB Green PrimeScript PLUS RT-PCR Kit | Takara | RR096A | |
PBS, pH 7.4 | Gibco | C10010500BT | |
Penicillin/streptomycin | Gibco | 151140-122 | |
Petri dishes | |||
Plastic cupes (7 oz) | Hubei Duoanduo | ||
Plastic cups (24 oz) | Anhui shangji | PET32-Tub-1 | |
Plastic disposable droppers | Biosharp | BS-XG-O3L-NS | |
Refrigerator (-80 °C) | sanyo | MDF-U54V | |
Replacement Glass Capillaries | Drummond | 3-000-203-G/X | |
RPMI medium 1640 | Gibco | C11875500BT | |
Screw cap storage tubes (2 mL ) | biofil | FCT010005 | |
Shallow dishes | |||
Sponge | |||
Sterile defibrillated horse blood | Wuhan Purity Biotechnology | CDHXB413 | |
T75 culture flask | Corning | 430829 | |
The artificial mosquito feeding system | Hemotek | Hemotek PS6 | |
The dissecting microscope | ZEISS | stemi508 | |
The ice plates | |||
The mosquito absorbing machine | Ningbo Bangning | ||
The pipette tips | Axygen | TF | |
Trypsin-EDTA (0.25%) | Gibco | 25200056 | |
Tweezers | Dumont | 0203-5-PO |