このプロトコールは、部分的にセグメント化された機能的CoQプールの存在を研究するために、Na+の存在または非存在下でのミトコンドリア複合体活性CI+ CIIIおよびCII + CIIIを使用して比較アッセイを記述する。
内側ミトコンドリア膜(IMM)のユビキノン(CoQ)プールは、複合体IまたはFAD依存性酵素のいずれかに部分的にセグメント化されている。このような細分化は、凍結融解ミトコンドリアにおける電子供与体としてNADHまたはコハク酸塩を用いた比較アッセイによって容易に評価することができ、そこではシトクロムc(cyt c)の減少が測定される。このアッセイは、IMMに対するNa+ の効果に依存しており、その流動性を低下させる。ここでは、NaClまたはKClの存在下でNADH-cyt-c酸化還元酵素活性およびコハク酸-cytc酸化還元酵素活性を測定するためのプロトコールを提示する。キュベット内の試薬の混合物に段階的に依存する反応は、Na+ またはK+の存在下で4分間分光光度法で測定される。同じ混合物を、吸光度の非特異的変化を差し引くために、特定の酵素阻害剤の存在下で並行して行う。NADH-cyt c酸化還元酵素活性は、これらの陽イオンのいずれの存在下においても低下しない。しかしながら、コハク酸−cytoc酸化還元酵素活性は、NaClの存在下では低下する。この簡単な実験は、1)IMM流動性およびCoQ伝達の減少におけるNa+ の効果を強調する。2)超錯体I+III2 がユビキノン(CoQ)転移をIMM流動性の低下による影響を受けることから保護すること。3)CIIとCIIIとの間のCoQ転移が、CIIとCIIIとの間のCoQ転移とは機能的に異なること。これらの事実は、IMMにおける機能的に分化したCoQプールの存在を支持し、それらがミトコンドリアの変化するNa+ 環境によって調節され得ることを示している。
ミトコンドリア酸化リン酸化系(OXPHOS)は、ミトコンドリアによるアデノシン三リン酸(ATP)合成、活性酸素種(ROS)産生、およびニコチンアミドアデニンジヌクレオチド(NADH)またはコハク酸塩などの還元等価物の消費を駆動する主な経路である。OXPHOS系は5つのタンパク質複合体から構成される:複合体I(CI)はNADHを酸化し、CoQをユビキノール(CoQH2)に還元する。複合体II(CII)は、コハク酸塩をフマル酸に酸化し、CoQをCoQH2に還元する。複合体III(CIII)は、CoQH2を酸化してCoQに戻し、シトクロムc(cyt c)を減少させる。最後に、複合体IV(CIV)はcyt cを酸化し、酸素を水に還元する。この酸化還元鎖、いわゆる電子輸送鎖(mETC)は、IMMを横切るH+のポンピングに結合し、複合体V(CV)がアデノシン二リン酸(ADP)をATPにリン酸化するために使用される電気化学的勾配を作り出す。
mETC 複合体は、IMM 内で単独で存在することも、スーパーコンプレックスと呼ばれる第 4 次構造にアセンブルすることもできます。CIVはCIIIと集合し、III2+IVまたはQ-レスピラソームを形成する(CoQH2の存在下で呼吸することができるように)1,2,3またはホモ二量体またはホモオリゴマー4を形成することができる。CIIIはCIと相互作用し、超錯体I+III25を形成することができる。最後に、CIはまた、Q-スピリアソームと相互作用することができ、I+III2+IVまたはN-スピリアソーム(NADHを消費する呼吸ができるので)1,6,7,8,9,10を構築する。
CoQおよびcyt cは、それぞれCI/CIIからCIIIへ、およびCIIIからCIVへ電子を伝達する役割を担う移動式電子伝達体である。スーパーコンプレックスがこれらのキャリアに機能的な局所的な制限を課すかどうかは、過去20年間にわたって激しい議論の問題でした2,7,11,12,13,14,15,16,17。しかし、いくつかの独立したグループは、CoQおよびcyt cがIMM内のプールに機能的にセグメント化できることを実証している。CoQに関して、CIのための特定のCoQプール(CoQNAD)およびFAD依存性酵素専用の別のプール(CoQFAD)1、7、12、18、19に機能的にセグメント化することができる。しかしながら、部分的にセグメント化された機能的CoQプールの存在を区別するために、代替オキシダーゼ(AOX)の過剰発現およびCIIIの非存在下でCIを組み立てることができる特異的mtDNA変異体の生成が必要であった1,19,20。
低酸素状態における活性酸素種(ROS)産生のメカニズムは最近まで知られていなかった。急性低酸素症では、CIは活性/不活性(A / D)遷移を起こし、これはH+ポンピングNADH-CoQ酸化還元酵素活性の低下を伴う。このようなH+ポンピングの減少は、ミトコンドリアマトリックスを酸性化し、ミトコンドリアマトリックス中のリン酸カルシウム沈殿物を部分的に溶解させ、可溶性Ca2+を放出する。この可溶性Ca2+の増加は、Na+と引き換えにCa2+を押し出すNa+/Ca2+交換体(NCLX)を活性化する。ミトコンドリアNa+増加は、IMMの内側のリン脂質と相互作用し、その流動性およびCIIとCIIIとの間のCoQ移動を減少させ、最終的にスーパーオキシドアニオン、酸化還元シグナル21を生成する。興味深いことに、CoQ転移はCIIとCIIIの間でのみ減少し、CIとCIIIの間では減少しなかったため、1)Na+はミトコンドリア内の既存のCoQプールの1つだけを調節することができた。2) IMM 内に機能的に分化した CoQ プールが存在する。したがって、ミトコンドリア酵素活性の研究に広く使用されているプロトコールを使用して、言及されたCoQプールの存在を評価することができる。
現在のプロトコールは、酸化されたcyt cの還元の測定に基づいており、CIIIの基質は、コハク酸塩(すなわち、CII基質)またはNADH(すなわち、CI基質)の存在下での吸光度による。同じサンプルを2つに分け、そのうちの1つはKClで処理し、もう1つは同じ濃度のNaClで処理します。このように、Na+がIMM流動性を低下させることを考えると、CoQがIMM内のユニークなプールに存在する場合、CI+CIIIおよびCII+CIIIの両方がNa+の存在下で減少するであろう。しかし、部分的にセグメント化された機能的CoQプールにCoQが存在する場合、Na+の効果はCII + CIII活性にはほとんど(またはのみ)明らかであるが、CI + CIIIには明らかではない。最近発表された21のように、Na+はCIIとCIIIの間のCoQ転移にのみ影響し(図1C,D)、CIとCIIIの間(図1A,B)には影響しない。
このプロトコルは、多数の技術とともに、IMM内に部分的にセグメント化された機能的CoQプールの存在を確認するために使用され、1つはCI(すなわち、CoQNAD)に捧げられ、もう1つはFAD結合酵素(すなわち、CoQFAD)専用である1,3,7;この観察は、議論され続けているが、22、いくつかのグループによって独立して裏付けられている7,19。したがって、スーパーコンプレックスへのCIのスーパーアセンブリは、CoQの局所移動度に影響を与え、スーパーコンプレックス1、7、13、14、23、24、25内のCIIIによるその使用を容易にする。
このプロトコルは、部分的にセグメント化されたCoQプールの存在を識別するための非常に簡単な手順を表していますが、考慮すべきいくつかの重要なステップがあります。基質(すなわち、NADHまたはコハク酸塩)は、これらの化合物の自己酸化が起こり得るので最後に添加することが好ましい。キュベットの反転は、読み取りを妨げる可能性のある気泡の形成を避けるために注意する必要があ?…
The authors have nothing to disclose.
我々は、技術支援をしてくれたR・マルティネス・デ・メナ博士、M・M・ムニョス・エルナンデス・A・C・ヒメネス博士及びE・R・マルティネス・ヒメネス博士に感謝する。この研究はMICIN:RTI2018-099357-B-I00およびHFSP(RGP0016/2018)によって支援された。CNICは、カルロス3世サルード研究所(ISCIII)、シエンシア大臣、イノヴァシオン・イ・ユニベルシダデス(MCNU)、プロCNIC財団の支援を受けており、セヴェロ・オチョア・センター・オブ・エクセレンス(SEV-2015-0505)です。図 2 は、BioRender.com で作成したものです。
Antimycin A | Sigma-Aldrich | A8674 | |
Bovine Serum Albumin (BSA) | Sigma-Aldrich | 10775835001 | |
Bradford protein assay | Bio-Rad | 5000001 | |
Cytochrome c from equine heart | Sigma-Aldrich | C7752 | |
K2HPO4 | Sigma-Aldrich | P3786 | |
KCl | Sigma-Aldrich | P3911 | |
Malonic acid | Sigma-Aldrich | M1296 | |
MgCl2 | Sigma-Aldrich | M8266 | |
NaCl | Sigma-Aldrich | S9888 | |
NADH | Roche | 10107735001 | |
Potassium cyanide | Sigma-Aldrich | 207810 | |
Rotenone | Sigma-Aldrich | R8875 | |
Spectra Manager software | JASCO | version 2 | |
Spectrophotometer | UV/VISJASCO | ||
Succinate | Sigma-Aldrich | 398055 |