Summary

高光谱受激拉曼散射与相干反斯托克斯拉曼散射显微镜在化学成像中的应用的直接比较

Published: April 28, 2022
doi:

Summary

本文直接比较了集成到同一显微镜平台中的受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)的分辨率、灵敏度和成像对比度。结果表明,CARS具有更好的空间分辨率,SRS具有更好的对比度和光谱分辨率,并且两种方法具有相似的灵敏度。

Abstract

受激拉曼散射(SRS)和相干反斯托克斯拉曼散射(CARS)显微镜是使用最广泛的相干拉曼散射成像技术。高光谱SRS和CARS成像在每个像素处提供拉曼光谱信息,从而可以更好地分离不同的化学成分。虽然这两种技术都需要两个激发激光器,但它们的信号检测方案和光谱特性却大不相同。该协议的目标是在单个平台上执行高光谱SRS和CARS成像,并比较用于成像不同生物样品的两种显微镜技术。采用光谱聚焦方法,利用飞秒激光器获取光谱信息。通过使用标准化学样品,比较了SRS和CARS在相同激发条件下的灵敏度,空间分辨率和光谱分辨率(即样品处的功率,像素停留时间,物镜,脉冲能量)。将CARS和SRS的成像对比度并列并进行比较。直接比较CARS和SRS性能将允许最佳选择化学成像模式。

Introduction

拉曼散射现象于1928年由C.V.拉曼1首次观测到。当入射光子与样品相互作用时,可以自发发生非弹性散射事件,其中光子的能量变化与所分析化学物质的振动跃迁相匹配。该过程不需要使用化学标签,使其成为多功能,无标签的化学分析工具,同时最大限度地减少样品扰动。尽管有其优点,但自发拉曼散射的散射截面较低(通常比红外[IR]吸收横截面低10 11 ),这需要较长的采集时间进行分析2。因此,寻求提高拉曼散射过程的灵敏度对于推动拉曼技术进行实时成像至关重要。

大大提高拉曼散射灵敏度的一种有效方法是通过相干拉曼散射(CRS)过程,其中两个激光脉冲通常用于激发分子振动转变34。当两种激光器之间的光子能量差与样品分子的振动模式相匹配时,将产生强烈的拉曼信号。用于成像的两种最常用的稀而实过程是相干反斯托克斯拉曼散射(CARS)和受激拉曼散射(SRS)5。在过去的二十年中,技术发展已经使CARS和SRS显微镜技术成为无标记定量和阐明生物样品中化学变化的强大工具。

CARS显微镜的化学成像可以追溯到1982年,当时激光扫描首次应用于获取CARS图像,由Duncan等人6演示。在激光扫描多光子荧光显微镜7的广泛应用之后,CARS显微镜的现代化大大加快了。Xie小组使用高重复率激光器的早期工作已经将CARS转变为一个高速,无标记的化学成像平台,用于表征生物样品中的分子8910。CARS成像的主要问题之一是存在非共振背景,这会降低图像对比度并扭曲拉曼光谱。已经做出了许多努力来减少非共振背景1112131415 或从CARS光谱1617中提取共振拉曼信号。另一个大大推进该领域的进步是高光谱CARS成像,它允许在每个图像像素上进行光谱映射,化学选择性提高18192021

受激拉曼散射(SRS)是一种比CARS更年轻的成像技术,尽管它是在22年早些时候发现的。2007年,SRS显微镜报告使用低重复率激光源23。很快,几个小组展示了使用高重复率激光器242526的高速SRS成像。与CARS相比,SRS显微镜的主要优点之一是没有非共振背景27,尽管其他背景如交叉相位调制(XPM),瞬态吸收(TA),双光子吸收(TPA)和光热(PT)效应,也可能发生在SRS28上。此外,SRS信号和样品浓度具有线性关系,不像CARS具有二次信号浓度依赖性29。这简化了化学定量和光谱分离。多色和高光谱SRS已经以不同的形式发展30313233343536,光谱聚焦是化学成像最流行的方法之一3738

CARS和SRS都需要将泵浦和斯托克斯激光束聚焦到样品上,以匹配分子的振动跃迁以进行信号激发。汽车和SRS显微镜也有很多共同点。然而,这两个过程背后的物理学,以及这些显微镜技术中涉及的信号检测存在差异339。CARS是一个参数化过程,没有净光子分子能量耦合3。然而,SRS是一个非参数过程,并且有助于光子和分子系统之间的能量转移27。在CARS中,产生反斯托克斯频率的新信号,而SRS表现为泵浦和斯托克斯激光束之间的能量转移。

汽车信号满足方程 (128

Equation 11

同时,SRS信号可以写为等式(228

Equation 1

在这里, pIsI汽车ΔISRS 分别是泵波束、斯托克斯波束、汽车信号和 SRS 信号的强度。χ(3) 是样品的三阶非线性光学敏感性,是由实部和虚部组成的复数值。

这些方程表示CARS和SRS的光谱图和信号浓度依赖性。物理场的差异导致这两种显微镜技术具有不同的检测方案。CARS中的信号检测通常涉及新生成的光子的光谱分离和使用光电倍增管(PMT)或电荷耦合器件(CCD)进行检测;对于SRS,泵和斯托克斯光束之间的能量交换通常通过使用光调制器的高速强度调制和使用与锁定放大器配对的光电二极管(PD)进行解调来测量。

尽管近年来在CARS和SRS领域都发表了许多技术发展和应用,但在同一平台上没有对这两种CRS技术进行系统比较,特别是对于高光谱CARS和SRS显微镜。在灵敏度、空间分辨率、光谱分辨率和化学分离能力方面的直接比较将使生物学家能够选择化学定量的最佳模式。在该协议中,提供了基于飞秒激光系统和光谱聚焦构建具有高光谱CARS和SRS模态的多模态成像平台的详细步骤。这两种技术在光谱分辨率,检测灵敏度,空间分辨率和细胞成像对比度方面进行了正向比较。

Protocol

1. 用于高光谱稀而实成像的仪器设置 注意:CRS信号的产生需要使用高功率(即3B级或4级)激光器。在如此高的峰值功率下工作时,必须解决安全协议问题,并且必须始终穿戴适当的个人防护装备(PPE)。在试验前查阅适当的文档。该协议侧重于设计光束路径、啁啾飞秒脉冲和优化成像条件。该高光谱稀而实显微镜的一般光学布局如图 1所示。…

Representative Results

光谱分辨率的比较图2 比较了使用DMSO样品的高光谱SRS(图2A)和CARS(图2B)显微镜的光谱分辨率。对于SRS频谱,应用两个洛伦兹函数(参见协议步骤2.3)来拟合光谱,并使用2,913 cm-1 峰获得14.6 cm-1 的分辨率。对于CARS,使用具有高斯背景的双峰拟合函数(参见协议步骤2.3)进行拟合,其光谱分辨率?…

Discussion

这里介绍的协议描述了多模态稀而实显微镜的构造以及CARS和SRS成像之间的直接比较。对于显微镜结构,关键步骤是空间和时间光束重叠以及光束尺寸优化。建议在生物成像之前使用DMSO等标准样品,以优化SNR和校准拉曼位移。CARS和SRS图像之间的直接比较表明,CARS具有更好的空间分辨率,而SRS具有更好的光谱分辨率和更少的复杂化学对比度。汽车和SRS都有相似的检测限。

CARS和…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项研究得到了普渡大学化学系启动基金的支持。

Materials

2D galvo scanner set Thorlabs GVS002
Acousto-optic modulator Isomet M1205-P80L-0.5
AOM driver Isomet 532B-2
Data acquisition card National Instruments PCle 6363 Custom ordered filter (980 sp)
Delay stage Zaber X-LSM050A
Deuterium oxide Millipore Sigma 151882-100G
Dichroic mirror for beam combination Thorlabs DMLP1000
Dichroic mirror for signal separation Semrock FF776-Di01-25×36
DMSO MiliporeSigma 200-664-3
MIA PaCa 2 Cells ATCC CRL-1420
Femtosecond laser system Spectral Physics InSightX3+
Filter for CARS Chroma AT655/30m
Filter for SRS Chroma ET980sp
Function generator Rigol DG1022Z
Glass rods Lattice Electro Optics SF-57
Half-wave plate Newport 10RP02-51; 10RP02-46
LabVIEW 2020 National Instruments This is the image acquisition software
Lock-in amplifier Zurich Instrument HF2LI
Microscope housing Olympus BX51W1
Objective lens Olympus UPLSAPO60XW
Origin Pro 2019b OriginLab Corporation This is the spectral fitting software
Oscilloscope Tektronix TBS2204B
Photodiode Hamamatsu S3994-01
PMT detector Hamamatsu H7422P-40
PMT voltage amplifier Advanced Research Instrument Corp. PMT4V3
Polarizing beamsplitter cube Thorlabs PBS255
Terminal block National Instruments BNC-2110

Referencias

  1. Raman, C. V. A change of wave-length in light scattering. Nature. 121 (3051), 619 (1928).
  2. Li, S., Li, Y., Yi, R., Liu, L., Qu, J. Coherent anti-Stokes Raman scattering microscopy and its applications. Frontiers in Physics. 8, 515 (2020).
  3. Evans, C. L., Xie, X. S. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annual Review of Analytical Chemistry. 1 (1), 883-909 (2008).
  4. Min, W., Freudiger, C. W., Lu, S., Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annual Review of Physical Chemistry. 62, 507-530 (2011).
  5. Suhalim, J. L., Boik, J. C., Tromberg, B. J., Potma, E. O. The need for speed. Journal of Biophotonics. 5 (5-6), 387-395 (2012).
  6. Duncan, M. D., Reintjes, J., Manuccia, T. J. Scanning coherent anti-Stokes Raman microscope. Optics Letters. 7 (8), 350-352 (1982).
  7. Denk, W., Strickler, J. H., Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science. 248 (4951), 73-76 (1990).
  8. Zumbusch, A., Holtom, G. R., Xie, X. S. Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Physical Review Letters. 82 (20), 4142-4145 (1999).
  9. Cheng, J. -. X., Xie, X. S. Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. The Journal of Physical Chemistry B. 108 (3), 827-840 (2004).
  10. Evans, C. L., et al. Chemical imaging of tissue in vivo with video-rate coherent anti-Stokes Raman scattering microscopy. Proceedings of the National Academy of Sciences of the United States of America. 102 (46), 16807 (2005).
  11. Cheng, J. -. X., Volkmer, A., Book, L. D., Xie, X. S. An epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity. The Journal of Physical Chemistry B. 105 (7), 1277-1280 (2001).
  12. Volkmer, A., Book, L. D., Xie, X. S. Time-resolved coherent anti-Stokes Raman scattering microscopy: Imaging based on Raman free induction decay. Applied Physics Letters. 80 (9), 1505-1507 (2002).
  13. Marks, D. L., Boppart, S. A. Nonlinear interferometric vibrational imaging. Physical Review Letters. 92 (12), 123905 (2004).
  14. Ganikhanov, F., Evans, C. L., Saar, B. G., Xie, X. S. High-sensitivity vibrational imaging with frequency modulation coherent anti-Stokes Raman scattering (FM CARS) microscopy. Optics Letters. 31 (12), 1872-1874 (2006).
  15. Potma, E. O., Evans, C. L., Xie, X. S. Heterodyne coherent anti-Stokes Raman scattering (CARS) imaging. Optics Letters. 31 (2), 241-243 (2006).
  16. Liu, Y., Lee, Y. J., Cicerone, M. T. Broadband CARS spectral phase retrieval using a time-domain Kramers-Kronig transform. Optics Letters. 34 (9), 1363-1365 (2009).
  17. Masia, F., Karuna, A., Borri, P., Langbein, W. Hyperspectral image analysis for CARS, SRS, and Raman data. Journal of Raman Spectroscopy. 46 (8), 727-734 (2015).
  18. Knutsen, K. P., Johnson, J. C., Miller, A. E., Petersen, P. B., Saykally, R. J. High spectral resolution multiplex CARS spectroscopy using chirped pulses. Chemical Physics Letters. 387 (4-6), 436-441 (2004).
  19. Okuno, M., Kano, H., Leproux, P., Couderc, V., Hamaguchi, H. -. o. Ultrabroadband multiplex CARS microspectroscopy and imaging using a subnanosecond supercontinuum light source in the deep near infrared. Optics Letters. 33 (9), 923-925 (2008).
  20. Masia, F., Glen, A., Stephens, P., Borri, P., Langbein, W. Quantitative chemical imaging and unsupervised analysis using hyperspectral coherent anti-Stokes Raman scattering microscopy. Analytical Chemistry. 85 (22), 10820-10828 (2013).
  21. Pegoraro, A. F., Slepkov, A. D., Ridsdale, A., Moffatt, D. J., Stolow, A. Hyperspectral multimodal CARS microscopy in the fingerprint region. Journal of Biophotonics. 7 (1-2), 49-58 (2014).
  22. Eckhardt, G., et al. Stimulated Raman scattering from organic liquids. Physical Review Letters. 9 (11), 455-457 (1962).
  23. Ploetz, E., Laimgruber, S., Berner, S., Zinth, W., Gilch, P. Femtosecond stimulated Raman microscopy. Applied Physics B. 87 (3), 389-393 (2007).
  24. Freudiger, C. W., et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science. 322 (5909), 1857-1861 (2008).
  25. Nandakumar, P., Kovalev, A., Volkmer, A. Vibrational imaging based on stimulated Raman scattering microscopy. New Journal of Physics. 11 (3), 033026 (2009).
  26. Slipchenko, M. N., Le, T. T., Chen, H., Cheng, J. -. X. High-speed vibrational imaging and spectral analysis of lipid bodies by compound Raman microscopy. The Journal of Physical Chemistry B. 113 (21), 7681-7686 (2009).
  27. Min, W., Freudiger, C. W., Lu, S., Xie, X. S. Coherent nonlinear optical imaging: beyond fluorescence microscopy. Annual Review of Physical Chemistry. 62 (1), 507-530 (2011).
  28. Zhang, C., Zhang, D., Cheng, J. -. X. Coherent Raman scattering microscopy in biology and medicine. Annual Review of Biomedical Engineering. 17 (1), 415-445 (2015).
  29. Prince, R. C., Frontiera, R. R., Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chemical Reviews. 117 (7), 5070-5094 (2017).
  30. Lu, F. -. K., et al. Multicolor stimulated Raman scattering microscopy. Molecular Physics. 110 (15-16), 1927-1932 (2012).
  31. Ozeki, Y., et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nature Photonics. 6 (12), 845-851 (2012).
  32. Wang, P., et al. Label-free quantitative imaging of cholesterol in intact tissues by hyperspectral stimulated raman scattering microscopy. Angewandte Chemie International Edition. 125 (49), 13280-13284 (2013).
  33. Freudiger, C. W., et al. Stimulated Raman scattering microscopy with a robust fibre laser source. Nature Photonics. 8 (2), 153-159 (2014).
  34. Liao, C. -. S., et al. Microsecond scale vibrational spectroscopic imaging by multiplex stimulated Raman scattering microscopy. Light: Science & Applications. 4 (3), 265 (2015).
  35. Liao, C. -. S., et al. Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Science Advances. 1 (9), 1500738 (2015).
  36. He, R., et al. Dual-phase stimulated Raman scattering microscopy for real-time two-color imaging. Optica. 4 (1), 44-47 (2017).
  37. Andresen, E. R., Berto, P., Rigneault, H. Stimulated Raman scattering microscopy by spectral focusing and fiber-generated soliton as Stokes pulse. Optics Letters. 36 (13), 2387-2389 (2011).
  38. Fu, D., Holtom, G., Freudiger, C., Zhang, X., Xie, X. S. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. The Journal of Physical Chemistry B. 117 (16), 4634-4640 (2013).
  39. Zhang, C., Aldana-Mendoza, J. A. Coherent Raman scattering microscopy for chemical imaging of biological systems. Journal of Physics: Photonics. , (2021).
  40. Martens, W. N., Frost, R. L., Kristof, J., Theo Kloprogge, J. Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 k. Journal of Raman Spectroscopy. 33 (2), 84-91 (2002).
  41. Gill, G. W., Gill, G. W. . Cytopreparation: Principles & Practice. , 309-323 (2013).
  42. Fu, D., et al. Imaging the intracellular distribution of tyrosine kinase inhibitors in living cells with quantitative hyperspectral stimulated Raman scattering. Nature Chemistry. 6 (7), 614-622 (2014).
  43. Wei, L., Yu, Y., Shen, Y., Wang, M. C., Min, W. Vibrational imaging of newly synthesized proteins in live cells by stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 110 (28), 11226-11231 (2013).
  44. Lu, F. -. K., et al. Label-free DNA imaging in vivo with stimulated Raman scattering microscopy. Proceedings of the National Academy of Sciences. 112 (37), 11624-11629 (2015).
  45. Slipchenko, M. N., et al. Vibrational imaging of tablets by epi-detected stimulated Raman scattering microscopy. Analyst. 135 (10), 2613-2619 (2010).
  46. Slipchenko, M. N., Zhou, B., Pinal, R., Teresa Carvajal, M., Cheng, J. -. X. RAMAN-chemical imaging of solid dosage forms based on stimulated Raman scattering. American Pharmaceutical Review. 15 (3), 66 (2012).
  47. Sarri, B., et al. Discriminating polymorph distributions in pharmaceutical tablets using stimulated Raman scattering microscopy. Journal of Raman Spectroscopy. 50 (12), 1896-1904 (2019).
  48. Fussell, A. L., Kleinebudde, P., Herek, J., Strachan, C. J., Offerhaus, H. L. Coherent anti-Stokes Raman scattering (CARS) microscopy visualizes pharmaceutical tablets during dissolution. JoVE (Journal of Visualized Experiments). (89), e51847 (2014).
  49. Freudiger, C. W., et al. Multicolored stain-free histopathology with coherent Raman imaging). Laboratory Investigation. 92 (10), 1492-1502 (2012).
  50. Lim, R. S., et al. Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice [S]. Journal of Lipid Research. 51 (7), 1729-1737 (2010).
  51. Ji, M., et al. label-free detection of brain tumors with stimulated Raman scattering microscopy. Science Translational Medicine. 5 (201), (2013).
  52. Tabish, T. A., Narayan, R. J., Edirisinghe, M. Rapid and label-free detection of COVID-19 using coherent anti-Stokes Raman scattering microscopy. Mrs Communications. 10 (4), 566-572 (2020).
  53. Camp, C. H., et al. High-speed coherent Raman fingerprint imaging of biological tissues. Nature Photonics. 8 (8), 627-634 (2014).
  54. Wei, L., et al. Live-cell bioorthogonal chemical imaging: stimulated Raman scattering microscopy of vibrational probes. Accounts of Chemical Research. 49 (8), 1494-1502 (2016).
  55. Hu, F., Shi, L., Min, W. Biological imaging of chemical bonds by stimulated Raman scattering microscopy. Nature Methods. 16 (9), 830-842 (2019).
  56. Nie, S., Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275 (5303), 1102-1106 (1997).
  57. Steuwe, C., Kaminski, C. F., Baumberg, J. J., Mahajan, S. Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Letters. 11 (12), 5339-5343 (2011).
  58. Fast, A., Kenison, J. P., Syme, C. D., Potma, E. O. Surface-enhanced coherent anti-Stokes Raman imaging of lipids. Applied Optics. 55 (22), 5994-6000 (2016).
  59. Zong, C., et al. Plasmon-enhanced stimulated Raman scattering microscopy with single-molecule detection sensitivity. Nature Communications. 10 (1), 1-11 (2019).
  60. Yampolsky, S., et al. Seeing a single molecule vibrate through time-resolved coherent anti-Stokes Raman scattering. Nature Photonics. 8 (8), 650-656 (2014).

Play Video

Citar este artículo
Clark, M. G., Brasseale III, K. A., Gonzalez, G. A., Eakins, G., Zhang, C. Direct Comparison of Hyperspectral Stimulated Raman Scattering and Coherent Anti-Stokes Raman Scattering Microscopy for Chemical Imaging. J. Vis. Exp. (182), e63677, doi:10.3791/63677 (2022).

View Video