Le présent protocole décrit une méthode améliorée pour augmenter la co-expression des facteurs de transcription PDX1 et NKX6.1 chez les progéniteurs pancréatiques dérivés de cellules souches pluripotentes humaines (CSPh) dans des monocouches planes. Ceci est réalisé en reconstituant la matrice fraîche, en manipulant la densité cellulaire et en dissociant les cellules endodermiques.
Les cellules souches pluripotentes humaines (CSPh) sont un excellent outil pour étudier le développement pancréatique précoce et étudier les facteurs génétiques contribuant au diabète. Des cellules sécrétrices d’insuline dérivées de l’hPSC peuvent être générées pour la thérapie cellulaire et la modélisation de la maladie, cependant, avec une efficacité et des propriétés fonctionnelles limitées. Les progéniteurs pancréatiques dérivés de l’hPSC qui sont des précurseurs des cellules bêta et d’autres cellules endocrines, lorsqu’ils expriment conjointement les deux facteurs de transcription PDX1 et NKX6.1, spécifient les progéniteurs des cellules bêta fonctionnelles sécrétant de l’insuline in vitro et in vivo. Les progéniteurs pancréatiques dérivés de l’hPSC sont actuellement utilisés pour la thérapie cellulaire chez les patients atteints de diabète de type 1 dans le cadre d’essais cliniques. Cependant, les procédures actuelles ne génèrent pas une proportion élevée de NKX6.1 et de progéniteurs pancréatiques, ce qui conduit à la cogénération de cellules endocrines non fonctionnelles et à peu de cellules sensibles au glucose et sécrétant de l’insuline. Ce travail a donc développé un protocole amélioré pour générer des progéniteurs pancréatiques dérivés de hPSC qui maximisent la co-expression de PDX1 et NKX6.1 dans une monocouche 2D. Les facteurs tels que la densité cellulaire, la disponibilité de la matrice fraîche et la dissociation des cellules endodermiques dérivées de hPSC sont modulés pour augmenter les niveaux de PDX1 et NKX6.1 dans les progéniteurs pancréatiques générés et minimiser l’engagement à alterner la lignée hépatique. L’étude souligne que la manipulation de l’environnement physique de la cellule lors de la différenciation in vitro peut avoir un impact sur la spécification de la lignée et l’expression des gènes. Par conséquent, le protocole optimisé actuel facilite la génération évolutive de progéniteurs co-exprimant PDX1 et NKX6.1 pour la thérapie cellulaire et la modélisation de la maladie.
Le diabète est un trouble métabolique complexe qui touche des millions de personnes dans le monde. La supplémentation en insuline est considérée comme la seule option de traitement du diabète. Les cas plus avancés sont traités par thérapie de remplacement des cellules bêta, obtenue par transplantation du pancréas cadavérique entier ou des îlots 1,2. Plusieurs problèmes entourent la thérapie de transplantation, tels que la limitation de la disponibilité et de la qualité des tissus, le caractère invasif des procédures de transplantation en plus du besoin continu d’immunosuppresseurs. Cela nécessite la découverte d’options nouvelles et alternatives pour la thérapie de remplacement des cellules bêta 2,3. Les cellules souches pluripotentes humaines (CSPh) sont récemment apparues comme un outil prometteur pour comprendre la biologie du pancréas humain et comme une source non exhaustive et potentiellement plus personnalisée pour la thérapie de transplantation 4,5,6,7. Les CSPh, y compris les cellules souches embryonnaires humaines (CSEh) et les cellules souches pluripotentes induites par l’homme (CSPh), ont une capacité d’auto-renouvellement élevée et donnent naissance à tout type de tissu du corps humain. Les CSEh sont dérivées de la masse cellulaire interne de l’embryon et les CSPh sont reprogrammées à partir de toute cellule somatique 4,8.
Les protocoles de différenciation dirigée sont optimisés pour générer des cellules bêta pancréatiques à partir de CSPh qui dirigent séquentiellement les CSPh à travers les stades de développement pancréatique in vitro. Ces protocoles génèrent des organoïdes d’îlots dérivés de hPSC. Bien qu’ils se soient grandement améliorés pour augmenter la proportion de cellules bêta pancréatiques dans ceux-ci, l’efficacité des protocoles est très variable. Il n’augmente pas à plus de ~40% des cellules NKX6.1+/INSULIN+ ou C-PEPTIDE+ 5,9,10,11,12,13. Cependant, les cellules bêta générées ne sont pas entièrement identiques aux cellules bêta humaines adultes en termes de profils transcriptionnels et métaboliques et de leur réponse au glucose 4,5,14. Les cellules bêta dérivées de hPSC manquent d’expression génique de marqueurs cellulaires bêta clés tels que PCSK2, PAX6, UCN3, MAFA, G6PC2 et KCNK3 par rapport aux îlots humains adultes5. De plus, les cellules bêta dérivées de hPSC ont une signalisation calcique diminuée en réponse au glucose. Ils sont contaminés par les cellules polyhormonales co-générées qui ne sécrètent pas des quantités appropriées d’insuline en réponse à l’augmentation des niveaux de glucose5. D’autre part, les progéniteurs pancréatiques dérivés de l’hPSC, qui sont des précurseurs d’îlots, pourraient être générés plus efficacement in vitro que les cellules bêta et, lorsqu’ils sont transplantés in vivo, pourraient mûrir en cellules bêta fonctionnelles sécrétant de l’insuline15,16. Les essais cliniques visent actuellement à démontrer leur innocuité et leur efficacité lors de la transplantation chez des sujets atteints de DT1.
Notamment, l’expression des facteurs de transcription PDX1 (Pancreatic and Duodenal Homeobox 1) et NKX6.1 (NKX6 Homeobox 1) au sein d’une même cellule progénitrice pancréatique est cruciale pour l’engagement vers une lignée de cellules bêta5. Les progéniteurs pancréatiques qui n’expriment pas NKX6.1 donnent naissance à des cellules endocrines polyhormonales ou à des cellules bêta non fonctionnelles17,18. Par conséquent, une co-expression élevée de PDX1 et NKX6.1 au stade progéniteur pancréatique est essentielle pour générer un grand nombre de cellules bêta fonctionnelles. Des études ont démontré qu’un corps embryoïde ou une culture 3D améliore PDX1 et NKX6.1 chez les progéniteurs pancréatiques où les cellules différenciantes sont agrégées, variant entre 40% et 80% de la population PDX1+/NKX6.1+12,19. Cependant, par rapport aux cultures en suspension, les cultures de différenciation 2D sont plus rentables, réalisables et pratiques pour une application sur plusieurs lignées cellulaires5. Nous avons récemment montré que les cultures de différenciation monocouche produisent plus de 90% des progéniteurs pancréatiques dérivés de PDX1+/NKX6.1+ co-exprimant hPSC20,21,22. La méthode rapportée conférait une capacité de réplication élevée aux progéniteurs pancréatiques générés et empêchait d’autres spécifications de devenir telles que la lignée hépatique21. Par conséquent, ce protocole démontre une méthode très efficace pour la différenciation des CSPh en précurseurs pancréatiques des cellules bêta co-exprimant PDX1 et NKX6.1. Cette méthode utilise la technique de dissociation de l’endoderme dérivé de hPSC et de manipulation de la densité cellulaire, suivie d’une signalisation étendue FGF et rétinoïde ainsi que de l’inhibition de Hedgehog pour promouvoir la co-expression de PDX1 et NKX6.1 (Figure 1). Cette méthode peut faciliter une génération évolutive de précurseurs bêta-cellulaires pancréatiques dérivés de hPSC pour la thérapie de transplantation et la modélisation de la maladie.
Ce travail décrit un protocole amélioré pour générer des progéniteurs pancréatiques à partir de CSPh avec une co-expression élevée de PDX1 et NKX6.1. La dissociation et le replatage de l’endoderme dérivé de hPSC à demi-densité sur une matrice fraîche ont entraîné une augmentation de PDX1 et NKX6,1 chez les progéniteurs pancréatiques dérivés de hPSC.
Bien que le cocktail de facteurs de croissance pour chaque stade soit très similaire à P1-ND 27, il a été démontré qu…
The authors have nothing to disclose.
Ce travail a été financé par une subvention du Fonds national de recherche du Qatar (QNRF) (Subvention No. NPRP10-1221-160041).
15 mL, conical, centrifuge tubes | Thermo Scientific | 339651 | |
20X TBS Tween 20 | Thermo Scientific | 28360 | |
24-well culture plates, flat bottom with lid | Costar | 3524 | |
50 mL, conical, centrifuge tubes | Thermo Scientific | 339652 | |
6- well culture plates, multidish | Thermo Scientific | 140685 | |
Accutase | Stem Cell Technologies | 0-7920 | |
Activin A | R&D | 338-AC | Reconstituted in 4 mM HCl |
Anti NKX6.1 antibody, mouse monoclonal | DSHB | F55A12-C | Diluted to 1:100 for flow-cytometry and 1:2000 for immunostaining |
Anti-PDX1 antibody, guinea pig polyclonal | Abcam | ab47308 | Diluted to 1:100 for flow-cytometry and 1:1000 for immunostaining |
B27 minus Vit A | ThermoFisher | 12587010 | |
Bovine serum albumin, heat shock fraction, fatty acid free | Sigma | A7030 | |
CHIR 99021 | Tocris | 4423 | Reconstituted in DMSO |
DMEM, high glucose | ThermoFisher | 41965047 | |
Donkey anti-Mouse IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 568 | Invitrogen | A10037 | |
Donkey anti-Rabbit IgG (H + L) Highly Cross-Adsorbed Secondary Antibody, Alexa Fluor 488 | A-21206 | ||
DPBS 1X | ThermoFisher | 14190144 | |
EGF | ThermoFisher | PHG0313 | Reconstituted in 0.1% BSA in PBS |
FGF10 | R&D | 345-FG | Reconstituted in PBS |
Glucose | Sigma Aldrich | G8644 | |
Hoechst 33258 | Sigma | 23491-45-4 | |
Inverted microscope | Olympus | IX73 | |
KnockOut DMEM/F-12 (1X) | Gibco | 12660-012 | |
KnockOut SR serum replacement | Gibco | 10828-028 | |
L-Ascorbic acid (vitamin C) | Sigma | A92902 | Reconstituted in distilled water |
Matrigel Growth Factor Reduced (GFR) Basement Membrane Matrix | Corning | 354230 | Aliquot the thawed stock and freeze at -20C. |
MCDB131 | ThermoFisher | 10372019 | |
Mouse anti-SOX17 | ORIGENE | CF500096 | Diluted to 1:100 for flow-cytometry and 1:2000 for immunostaining |
mTeSR Plus | Stem Cell Technologies | 85850 | Mix the basal media with supplement. Aliquot and store at -20 °C for longer time or at 4 °C for instant use |
Nalgene filter units, 0.2 µm PES | ThermoFisher | 566-0020 | |
Nicotinamide | Sigma | 72340 | Reconstituted in distilled water |
NOGGIN | R&D | 6057-NG | Reconstituted in 0.1% BSA in PBS |
Paraformaldehyde solution 4% in PBS | ChemCruz | sc-281692 | |
Penicillin-Streptomycin (10,000 U/mL) | ThermoFisher | 15140122 | |
Portable vacuum aspirator | |||
Rabbit anti-FOXA2 | Cell signaling technology | 3143 | Diluted to 1:100 for flow-cytometry and 1:500 for immunostaining |
Retinoic Acid | Sigma Aldrich | R2625 | Reconstituted in DMSO |
Rock inhibitor (Y-27632) | ReproCell | 04-0012-02 | Reconstituted in DMSO |
Round Bottom Polystyrene FACS Tubes with Caps, STERILE | Stellar Scientific | FSC-9010 | |
SANT-1 | Sigma Aldrich | S4572 | Reconstituted in DMSO |
Sodium bicarbonate | Sigma | S5761-500G | |
StemFlex | ThermoFisher | A3349401 | Mix the basal media with supplement. Aliquot and store at -20 °C for longer time or at 4 °C for instant use |
TALI Cellular Analysis Slide | Invitrogen | T10794 | |
Tali image-based cytometer automated cell counter | Invitrogen | T10796 | |
Triton X-100 | Sigma | 9002-93-1 | |
TrypLE 100 mL | ThermoFisher | 12563011 | |
Tween 20 | Sigma | P2287 | |
UltraPure 0.5 M EDTA, pH 8.0 | Invitrogen | 15575-038 |