Summary

C-section of Preclinical Animal Model of Chorioamnionitis Triggered by Group B Streptococcus (GBS)

Published: December 29, 2021
doi:

Summary

The goal of this protocol is to describe a preclinical animal model of Group B Streptococcus (GBS)-induced chorioamnionitis. The study is designed to investigate mechanistic processes, potential causal links with developmental impairments, and finally to develop translational anti-inflammatory placento- and neuro-protective treatments.

Abstract

Group B Streptococcus (GBS) is one of the most common bacteria isolated during human pregnancy. It is a leading cause of placental infection/inflammation, termed chorioamnionitis. Chorioamnionitis exposes the developing fetus to a high risk of organ injuries, perinatal morbidity, and mortality, as well as life-long neurobehavioral impairments and other non-neurological developmental issues. The two most frequent subtypes of GBS isolates from maternal and fetal tissues are serotypes Ia (13%-23%) and III (25%-53%). Our lab has developed and characterized a rat model of GBS-induced chorioamnionitis to study subsequent impacts on the central nervous system of the developing fetus and to understand underlying mechanistic aspects. This article presents the design as well as uses of the preclinical rat model, which closely reproduces the hallmark of GBS-induced chorioamnionitis in humans. This article aims to help scientists reproduce the experimental design as well as to provide support through examples of troubleshooting. The present model may also contribute to potential discoveries through uncovering causes, mechanisms, and novel therapeutic avenues, which remain unsettled in many developmental impairments arising from chorioamnionitis. Furthermore, the use of this model may be extended to the studies of perinatal non-neurological common and severe morbidities affecting, for instance, the retina, bowel, lung, and kidney. The main interest of this research is in the field of GBS-induced fetal neurodevelopmental impairments such as cerebral palsy (CP), attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD). The rationale supporting this model is presented in this article, followed by procedures and results.

Introduction

Maternal immune activation (MIA) has been described as one of the most critical independent risk factors for premature birth, fetal death, and lifelong cognitive and behavioral impairments in the progeny1,2,3,4. Much of the existing preclinical research about the role of gestational inflammation on placental and developmental outcomes uses pathogen components, such as lipopolysaccharide (LPS) from E. coli and the synthetic analog of viral double-stranded RNA, polyinosinic: polycytidylic acid (Poly[I: C]), that mimic viral infections. However, even though Group B Streptococcus (GBS) is the most frequent cause of perinatal infection, few animal models have addressed its role in inflammatory mechanisms at play and the outcomes5.

GBS is an encapsulated gram-positive coccus that colonizes the lower genital tract in approximately 15%-30% of pregnant women6. It leads to placental infection/inflammation, termed chorioamnionitis7,8. Of the ten GBS serotypes, the two most frequent serotypes Ia and III are major infectious determinants of injuries in maternofetal tissues9,10. GBS infection has been shown to lead to a higher inflammatory response in fetal blood and placental deficiency, which are highly suspected to be involved in multiple neurodevelopmental disorders such as cerebral palsy (CP), attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD)5,11.

Over the past ten years, we have developed a rat model of GBS-induced chorioamnionitis that leads to various developmental impairments in the offspring12. This preclinical model demonstrates the causal link between GBS-induced placental inflammation and a range of sex-specific neurodevelopmental impairments in the offspring13,14,15. The goal of this article is to provide readers with insight into the design of a preclinical rat model of end-gestational infection and resulting neuro-behavioral impairments in the offspring. The present protocol aims to mimic the clinical reality of GBS-induced chorioamnionitis.

Results from this preclinical model show that end-gestational intra-peritoneal (IP) inoculation (Figure 1) of GBS leads to (i) placental infection and inflammation, fulfilling the diagnostic criteria of chorioamnionitis16; (ii) a massive upregulation of IL-1β and downstream inflammatory molecules from the IL-1-pathway, within the placenta12; (iii) neurodevelopmental impairments in the offspring12; (iv) sex differences in immune responses and subsequent neurobehavioral impairments, such as female offspring presenting adult ADHD-like traits while male offspring present early-onset and long-lasting ASD-like traits; (v) distinct neurobehavioral outcomes in the progeny depending on the GBS serotype used to induce chorioamnionitis14,15. In line with these findings, the main next steps utilizing this model will be to test, firstly, the role of androgen in GBS-induced chorioamnionitis and, secondly, the placental- and neuro-protective role of molecules targeting specific inflammatory pathways, in the hope to bring some of these molecules to the threshold of therapeutic clinical trials.

Protocol

All experiments were approved by the Research Institute of McGill University Health Centre (RI-MUHC). All experiments were performed according to the Canadian Council on Animal Care. 1. Pregnant Lewis rats Obtain Lewis rats from commercial sources at gestational day (G)14. House them in an appropriate animal facility (RI-MUHC animal facility) in a controlled environment at 20-23 °C with a 12 h light/dark cycle, and access to water and food ad libitum<…

Representative Results

IP inoculation of GBS resulted in placental infection Immunohistochemistry (IHC) (using polyclonal antibodies targeting GBS serotype Ia) staining showed that GBS infection reached the decidual compartment of the placenta. Infection also spread from the decidua to the labyrinth, chorionic plate, and in some instances, to fetuses leading to fetal death (5.8 ± 0.8 in GBS-exposed vs. 9.3 ± 0.6 pups in control (CTL) litters)18. Hence, the litter size was decreased at bi…

Discussion

Critical steps in the protocol
Several steps of the protocol are critical and require some quality controls. For instance, there is a risk of contamination of the GBS stock by other pathogens. This can be rapidly identified using the appropriate technique of GBS microbial identification such as colony aspect on BHI agar (e.g., size, shape, color), plating in duplicate the β-hemolytic GBS dose on Columbia blood agar with 5% sheep blood medium and on CHROMID Strepto B agar, a selective chromogen…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This study was supported by the Research Institute of the McGill University Health Centre (RI-MUHC), Canadian Institutes of Health Research (CIHR). This study was made possible by the following funding agencies, institutions, and foundations: Canadian Institute of Health Research (CIHR), Foundation of Stars, Fonds de Recherche Québec-Sciences (FRQS), McGill University, and Sherbrooke University. Many thanks to Dr. Claire Poyart, University Denis Diderot (Paris VII), France, and Dr. Mariela Segura, University de Montréal, Canada for the generous gifts of GBS.

Materials

5 mL sterile tube BD Biosciences
50 ml falcon tubes Thermo Fisher 339652
Blade or scalpel BD Medical 371716
Brain Heart Infusion Broth Criterion (Hardy diagnostics) C5141
CHROMID Strepto B agar plate BioMerieux, Saint-Laurent 43461
Columbia blood agar 5 % with sheep blood medium Thermo Scientific R01215
Forward primer 5' – TAC AGC CTG AGG ACA TAT TA3' Sigma
Insulin syringe Becton, Dickinson and Co(BD) 324702
Lewis rats Charles River Laboratories
Methylbutan Sigma Aldrich M32631
Microtainer blood collection tubes Becton, Dickinson and Co(BD) 365965
Reverse primer 5' – GCA CTT TAA CCC TTC GAT GA -3' Sigma
Serological Pipettes 1 ML Thermo Fisher 170353N
Serological Pipettes 10 ML Thermo Fisher 170356N
Serological Pipettes 25 ML Thermo Fisher 170357N
Serological Pipettes 5 ML Thermo Fisher 170355N
Superfrost Plus Micro Slide, Premium VWR CA48311-703

Referencias

  1. Hui, C. W., et al. Prenatal immune challenge in mice leads to partly sex-dependent behavioral, microglial, and molecular abnormalities associated with schizophrenia. Frontiers in Molecular Neuroscience. 11, 13 (2018).
  2. Costa, A., et al. Activation of the NLRP3 inflammasome by group B streptococci. Journal of Immunology. 188 (4), 1953-1960 (2012).
  3. Gupta, R., et al. RNA and beta-hemolysin of group B Streptococcus induce interleukin-1beta (IL-1beta) by activating NLRP3 inflammasomes in mouse macrophages. Journal of Biological Chemistry. 289 (20), 13701-13705 (2014).
  4. Henneke, P., et al. Lipoproteins are critical TLR2 activating toxins in group B streptococcal sepsis. Journal of Immunology. 180 (9), 6149-6158 (2008).
  5. Nelson, K. B., Chang, T. Is cerebral palsy preventable. Current Opinion in Neurology. 21 (2), 129-135 (2008).
  6. Larsen, J. W., Sever, J. L. Group B Streptococcus and pregnancy: a review. American Journal of Obstetrics and Gynecology. 198 (4), 440-448 (2008).
  7. Patras, K. A., Nizet, V. Group B Streptococcal maternal colonization and neonatal disease: molecular mechanisms and preventative approaches. Frontiers in Pediatrics. 6, 27 (2018).
  8. Tita, A. T., Andrews, W. W. Diagnosis and management of clinical chorioamnionitis. Clinics in Perinatology. 37 (2), 339-354 (2010).
  9. Teatero, S., et al. Serotype distribution, population structure, and antimicrobial resistance of Group B Streptococcus strains recovered from colonized pregnant women. Journal of Clinical Microbiology. 55 (2), 412-422 (2017).
  10. Lu, B., et al. Microbiological and clinical characteristics of Group B Streptococcus isolatescausing materno-neonatal infections: high prevalence of CC17/PI-1 and PI-2b sublineage in neonatal infections. Journal of Medical Microbiology. 67 (11), 1551-1559 (2018).
  11. Limperopoulos, C., et al. Positive screening for autism in ex-preterm infants: prevalence and risk factors. Pediatrics. 121 (4), 758-765 (2008).
  12. Bergeron, J. D., et al. White matter injury and autistic-like behavior predominantly affecting male rat offspring exposed to group B streptococcal maternal inflammation. Developmental Neuroscience. 35 (6), 504-515 (2013).
  13. Giraud, A., et al. Ampicillin treatment increases placental Interleukin-1 beta concentration and polymorphonuclear infiltration in Group B Streptococcus-induced chorioamnionitis: A preclinical study. Neonatology. 117 (3), 369-373 (2020).
  14. Allard, M. J., et al. A sexually dichotomous, autistic-like phenotype is induced by Group B Streptococcus maternofetal immune activation. Autism Research. 10 (2), 233-245 (2017).
  15. Allard, M. J., Giraud, A., Segura, M., Sebire, G. Sex-specific maternofetal innate immune responses triggered by group B Streptococci. Scientific Reports. 9 (1), 8587 (2019).
  16. Allard, M. J., Brochu, M. E., Bergeron, J. D., Segura, M., Sebire, G. Causal role of group B Streptococcus-induced acute chorioamnionitis in intrauterine growth retardation and cerebral palsy-like impairments. Journal of Developmental Origins of Health and Disease. 10 (5), 595-602 (2019).
  17. Girard, S., Tremblay, L., Lepage, M., Sebire, G. IL-1 receptor antagonist protects against placental and neurodevelopmental defects induced by maternal inflammation. Journal of Immunology. 184 (7), 3997-4005 (2010).
  18. Bergeron, J., et al. Activation of the IL-1beta/CXCL1/MMP-10 axis in chorioamnionitis induced by inactivated Group B Streptococcus. Placenta. 47, 116-123 (2016).
  19. Allard, M. J., Brochu, M. E., Bergeron, J. D., Sebire, G. Hyperactive behavior in female rats in utero-exposed to group B Streptococcus-induced inflammation. International Journal of Developmental Neuroscience. 69, 17-22 (2018).
  20. Shuster, K. A., et al. Naturally occurring disseminated group B streptococcus infections in postnatal rats. Comparative Medicine. 63 (1), 55-61 (2013).
  21. Randis, T. M., et al. Group B Streptococcus beta-hemolysin/cytolysin breaches maternal-fetal barriers to cause preterm birth and intrauterine fetal demise in vivo. Journal of Infectious Diseases. 210 (2), 265-273 (2014).
  22. Noble, K., et al. Group B Streptococcus cpsE is required for Serotype V capsule production and aids in biofilm formation and ascending infection of the reproductive tract during pregnancy. ACS Infectious Diseases. 7 (9), 2686-2696 (2021).
  23. Kim, C. J., et al. Acute chorioamnionitis and funisitis: definition, pathologic features, and clinical significance. American Journal of Obstetrics and Gynecology. 213, 29-52 (2015).
  24. Becker, K. J. Strain-related differences in the immune response: Relevance to human stroke. Translational Stroke Research. 7 (4), 303-312 (2016).
  25. Mestas, J., Hughes, C. C. Of mice and not men: differences between mouse and human immunology. Journal of Immunology. 172 (5), 2731-2738 (2004).
  26. Fernandez de Cossio, L., Guzman, A., vander Veldt, S., Luheshi, G. N. Prenatal infection leads to ASD-like behavior and altered synaptic pruning in the mouse offspring. Brain, Behavior, and Immunity. 63, 88-98 (2017).
  27. Shi, L., Fatemi, S. H., Sidwell, R. W., Patterson, P. H. Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. The Journal of Neuroscience. 23 (1), 297-302 (2003).
  28. Boksa, P. Effects of prenatal infection on brain development and behavior: a review of findings from animal models. Brain, Behavior, and Immunity. 24 (6), 881-897 (2010).
  29. Girard, S., Kadhim, H., Beaudet, N., Sarret, P., Sebire, G. Developmental motor deficits induced by combined fetal exposure to lipopolysaccharide and early neonatal hypoxia/ischemia: a novel animal model for cerebral palsy in very premature infants. Neurociencias. 158 (2), 673-682 (2009).
  30. Meyer, U., Feldon, J. To poly(I:C) or not to poly(I:C): advancing preclinical schizophrenia research through the use of prenatal immune activation models. Neuropharmacology. 62 (3), 1308-1321 (2012).
  31. Lammert, C. R., Lukens, J. R. Modeling autism-related disorders in mice with Maternal Immune Activation (MIA). Methods. Journal of Molecular Biology. 1960, 227-236 (2019).
  32. Gundling, W. E., Wildman, D. E. A review of inter- and intraspecific variation in the eutherian placenta. Philosophical Transactions of the Royal Society B. 370 (1663), 20140072 (2015).
  33. Harrell, M. I., et al. Exploring the pregnant guinea pig as a model for Group B Streptococcus intrauterine infection. The Journal of Infectious Diseases. 2 (2), (2017).
  34. Redline, R. W. Classification of placental lesions. American Journal of Obstetrics and Gynecology. 213, 21-28 (2015).
  35. Erez, O., et al. Differential expression pattern of genes encoding for anti-microbial peptides in the fetal membranes of patients with spontaneous preterm labor and intact membranes and those with preterm prelabor rupture of the membranes. Journal of Maternal-Fetal and Neonatal Medicine. 22 (12), 1103-1115 (2009).
  36. Burns, C., Hall, S. T., Smith, R., Blackwell, C. Cytokine levels in late pregnancy: Are female infants better protected against inflammation. Frontiers in Immunology. 6, 318 (2015).
  37. Elsmen, E., Ley, D., Cilio, C. M., Hansen-Pupp, I., Hellstrom-Westas, L. Umbilical cord levels of interleukin-1 receptor antagonist and neonatal outcome. Biology of the Neonate. 89 (4), 220-226 (2006).
  38. Chuang, K. H., et al. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. Journal of Experimental Medicine. 206 (5), 1181-1199 (2009).
  39. Mantalaris, A., et al. Localization of androgen receptor expression in human bone marrow. The Journal of Pathology. 193 (3), 361-366 (2001).
  40. Rasmussen, J. M., et al. Maternal Interleukin-6 concentration during pregnancy is associated with variation in frontolimbic white matter and cognitive development in early life. Neuroimage. 185, 825-835 (2019).
  41. Dozmorov, M. G., et al. Associations between maternal cytokine levels during gestation and measures of child cognitive abilities and executive functioning. Brain, Behavior, and Immunity. 70, 390-397 (2018).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Ayash, T. A., Vancolen, S. Y., Allard, M., Sébire, G. C-section of Preclinical Animal Model of Chorioamnionitis Triggered by Group B Streptococcus (GBS). J. Vis. Exp. (178), e63221, doi:10.3791/63221 (2021).

View Video