Summary

用于监测小脑依赖性感觉联想学习的灵活平台

Published: January 19, 2022
doi:

Summary

我们开发了一个单一的平台来跟踪动物在两个攀爬纤维依赖性联想学习任务中的行为。低成本设计允许与光遗传学或成像实验集成,旨在攀登纤维相关的小脑活动。

Abstract

攀爬浦肯野细胞的纤维输入为小脑依赖性联想学习提供了至关重要的指导性信号。在头部固定小鼠中研究这些信号有助于使用成像,电生理学和光遗传学方法。在这里,开发了一个低成本的行为平台(约1000美元),可以跟踪头部固定的小鼠的联想学习,这些小鼠在跑步轮上自由运动。该平台结合了两种常见的联想学习范式:眨眼调节和延迟触觉惊吓调节。使用摄像头跟踪行为,并由检测器跟踪车轮运动。我们描述了组件和设置,并为训练和数据分析提供了详细的协议。该平台允许结合光遗传学刺激和荧光成像。该设计允许一台主机控制多个平台,以同时训练多只动物。

Introduction

巴甫洛夫条件反射刺激之间的亚秒级关联以引发条件反应长期以来一直用于探究小脑依赖性学习。例如,在经典的延迟眨眼调节(DEC)中,动物学会在响应中性条件刺激(CS;例如,闪光或听觉音调)时,当它与无条件刺激(美国;例如,施加在角膜上的空气)反复配对时,做出适时的保护性眨眼,这总是引起反射性眨眼, 并且出现在 CS 的末尾或接近末尾。习得的反应被称为条件反应(CR),而反射反应被称为无条件反应(UR)。在兔子中,小脑特异性病变破坏了这种形式的学习1234。此外,浦肯野细胞复合物尖峰,由其爬升光纤输入5驱动,提供必要的67 和足够的89 信号,用于采集适当定时的CR。

最近,已经为头部固定的小鼠开发了攀爬纤维依赖性联想学习范式。DEC是第一个适应这种配置的关联学习范式1011。头固定小鼠中的DEC已被用于识别小脑区域11121314151617 和电路元件11121314151819 任务获取和消亡所必需的。这种方法也被用来证明任务参数的细胞水平生理表示如何随着学习131516而进化。

除了眨眼之外,延迟惊吓触觉调节(DTSC)范式最近被开发为一种用于头部固定小鼠的新型联想学习任务20。在概念上与DEC类似,DTSC涉及用US呈现中性CS,轻敲面部的强度足以使惊吓反射2122 作为UR。在DTSC范式中,UR和CR都被读出为车轮上的向后运动。DTSC现在已被用于揭示联想学习如何改变小脑活动和基因表达模式20

在这项工作中,开发了一种在单个平台中灵活应用DEC或DTSC的方法。激励和平台属性在 图 1 中进行了架构化。该设计结合了使用摄像头跟踪动物行为的能力,以及用于跟踪鼠标在轮子上的运动的旋转编码器。数据记录和试验结构的所有方面都由配对的微控制器(Arduino)和单板计算机(SBC;树莓派)。可以通过提供的图形用户界面访问这些设备。在这里,我们介绍了用于设置、实验准备和执行的工作流程,以及用于数据可视化的自定义分析管道。

Protocol

这里描述的动物协议已获得普林斯顿大学动物护理和使用委员会的批准。 1. 设置 SBC 将相机串行接口 (CSI) 电缆连接到 Raspberry NoIR V2 相机和 SBC 上的相机端口。 将 SBC 的操作系统下载到主机上。将操作系统映像写入微型安全数字 (microSD) 卡。注意:有关树莓派SBC的这些程序的详细说明,可以在别处找到23。该系统已使用以下…

Representative Results

DEC实验和分析的工作流程正确的实验参数选择对于成功进行延迟眨眼调节 (DEC) 训练非常重要。对于此处提供的数据,GUI 用于选择 350 ms 的 CS 持续时间和 50 ms 的美国持续时间。这种配对导致300毫秒的刺激间间隔:足够长以防止低振幅CR产生10 ,足够短以避免进入不良学习或痕量条件调节的制度,这一过程涉及额外的大脑区域11。试验之间的时?…

Discussion

此处概述的具有相关协议的平台可用于可靠地跟踪两个感官联想学习任务中的动物行为。每个任务都依赖于通过攀爬纤维路径的完整通信。在这里描述的设计中,我们加入了促进小脑反应的学习和记录/扰动的元素。这些包括一个允许自由运动的轮子1118 以及头部固定。滚轮允许小鼠受试者自由运动,这已被观察到对于DEC采集18至关重…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了美国国家心理健康研究所NRSA F32 MH120887-03(G.J.B.)和R01 NS045193和R01 MH115750(S.S-H.W.)的资助。我们感谢Bas Koekkoek博士和Henk-Jan Boele博士为优化DEC设置而进行的有益讨论,并感谢Yue Wang博士和Xiaoying Chen博士为优化DTSC设置而进行的有益讨论。

Materials

"B" Quick Base For C&B METABOND – 10 mL bottle Parkell S398 Dental cement solvent
"C" Universal TBB Catalyst – 0.7 mL Parkell S371 Catalyst
#8 Washers Thorlabs W8S038 Washers
0.250" (1/4") x 8.00" Stainless Steel Precision Shafting Servocity 634172 1/4" shaft
0.250” (0.770") Clamping Hub Servocity 545588 Clamping hub
1/4" to 6 mm Set Screw Shaft Coupler- 5 pack Actobotics 625106 Shaft-coupling sleeve
1/4"-20 Cap Screws, 3/4" Long Thorlabs SH25S075 1/4" bolt
100 pcs 5 mm 395–400 nm UV Ultraviolet LED Light Emitting Diode Clear Round Lens 29 mm Long Lead (DC 3V) LEDs Lights +100 pcs Resistors EDGELEC ‎ED_YT05_U_100Pcs CS LEDs
2 m Micro HDMI to DVI-D Cable – M/M – 2 m Micro HDMI to DVI Cable – 19 pin HDMI (D) Male to DVI-D Male – 1920 x 1200 Video Star-tech ‎HDDDVIMM2M Raspberry Pi4B to monitor cable
256 GB Ultra Fit USB 3.1 Flash Drive SanDisk ‎SDCZ430-256G-G46 USB thumb drive
3.3 V–5 V 4 Channels Logic Level Converter Bi-Directional Shifter Module Amazon B00ZC6B8VM Logic level shifter
32 GB 95 MB/s (U1) microSDHC EVO Select Memory Card Samsung ‎MB-ME32GA/AM microSD card
4.50" Aluminum Channel Servocity 585444 4.5" aluminum channel
48-LED CCTV Ir Infrared Night Vision Illuminator Towallmark SODIAL Infrared light array
4PCS Breadboards Kit Include 2PCS 830 Point 2PCS 400 Point Solderless Breadboards for Proto Shield Distribution Connecting Blocks REXQualis B07DL13RZH Breadboard
5 Port Gigabit Unmanaged Ethernet Network Switch TP-Link ‎TL-SG105 Ethernet switch
5 V 2.5 A Raspberry Pi 3 B+ Power Supply/Adapter Canakit ‎DCAR-RSP-2A5 Power supply for Raspberry Pi 3B+
5-0 ETHILON BLACK 1 x 18" C-3 Ethicon 668G Sutures
6 mm Shaft Encoder 2000 PPR Pushpull Line Driver Universal Output Line Driver Output 5-26 V dc Supply Calt  B01EWER68I Rotary encoder
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 1", 5 Pack Thorlabs TR1-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 2", 5 Pack Thorlabs TR2-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 4", 5 Pack Thorlabs TR4-P5 Optical posts
Ø1/2" Optical Post, SS, 8-32 Setscrew, 1/4"-20 Tap, L = 6", 5 Pack Thorlabs TR6-P5 Optical posts
Ø1/2" Post Holder, Spring-Loaded Hex-Locking Thumbscrew, L = 2" Thorlabs PH2 Optical post holder
Adapter-062-M X LUER LOCK-F The Lee Co. TMRA3201950Z Solenoid valve luer adapter
Aeromat Foam Roller Size: 36" Length Aeromat B002H3CMUE Foam roller
Aluminum Breadboard 10" x 12" x 1/2", 1/4"-20 Taps Thorlabs MB1012 Aluminum breadboard
Amazon Basics HDMI to DVI Adapter Cable, Black, 6 Feet, 1-Pack Amazon HL-007347 Raspberry Pi3B+ to monitor cable
Arduino  Uno R3 Arduino A000066 Arduino Uno (microcontroller board)
Arduino Due Arduino ‎A000062 Arduino Due (microcontroller board)
Bench Power Supply, Single, Adjustable, 3 Output, 0 V, 24 V, 0 A, 2 A Tenma 72-8335A Power supply
Clear Scratch- and UV-Resistant Cast Acrylic Sheet, 12" x 24" x 1/8" McMaster Carr 8560K257 Acrylic sheet
CNC Stepper Motor Driver 1.0–4.2 A 20–50 V DC 1/128 Micro-Step Resolutions for Nema 17 and 23 Stepper Motor Stepper Online B06Y5VPSFN Stepper motor driver
Compact Compressed Air Regulator, Inline Relieving, Brass Housing, 1/4 NPT McMaster Carr 6763K13 Air source regulator
Cotton Swab Puritan 806-WC Cotton swab
Dell 1908FP 19" Flat Panel Monitor – 1908FPC Dell 1908FPC Computer monitor
Flex Cable for Raspberry Pi Camera Adafruit 2144 camera serial interface cable
High Torque Nema 17 Bipolar Stepper Motor 92 oz·in/65 N·cm 2.1 A Extruder Motor Stepper Online 17HS24-2104S Stepper motor
Isoflurane Henry Schein 66794001725 Isoflurane
Krazy Maximum Bond Permanent Glue, 0.18 oz. Krazy Glue KG483 Cyanoacrylate glue
Lidocaine HCl VetOne 510212 Lidocaine
Low-Strength Steel Hex Nut, Grade 2, Zinc-Plated, 1/4"-20 Thread Size McMaster Carr 90473A029 Nuts
M3 x 50 mm Partially Threaded Hex Key Socket Cap Head Screws 10 pcs Uxcell A16040100ux1380 M3 bolt
NEMA 17 Stepper Motor Mount ACTOBOTICS 555152 Stepper motor mount
Official Raspberry Pi Power Supply 5.1 V 3 A with USB C – 1.5 m long Adafruit 4298 Power supply for Raspberry Pi 4B
Optixcare Dog & Cat Eye Lube Lubricating Gel, 0.70-oz tube Optixcare 142422 Opthalimic ointment
Precision Stainless Steel Ball Bearing, Shielded, Trade No. R188-2Z, 13000 rpm Maximum Speed McMaster-Carr 3759T57 Bearing
Premium Female/Female Jumper Wires – 40 x 6" Adafruit 266 Wires
Premium Female/Male 'Extension' Jumper Wires – 40 x 6" (150 mm) Adafruit 826 Wires
Premium Male/Male Jumper Wires – 40 x 6" Adafruit 758 Wires
Radiopaque L-Powder for C&B METABOND – 5 g Parkell S396 Dental cement powder
Raspberry Pi (3B+ or 4B) Adafruit 3775 or 4295 Raspberry Pi
Raspberry Pi NoIR Camera Module V2 – 8MP 1080P30 Raspberry Pi Foundation RPI3-NOIR-V2 Raspberry NoIR V2 camera
Right-Angle Bracket, 1/4" (M6) Counterbored Slot, 8-32 Taps Thorlabs AB90E Right-angle bracket
Right-Angle Clamp for Ø1/2" Posts, 3/16" Hex Thorlabs RA90 Right-angle optical post clamp
Right-Angle End Clamp for Ø1/2" Posts, 1/4"-20 Stud and 3/16" Hex Thorlabs RA180 Right-angle end clamp
RJ45 Cat-6 Ethernet Patch Internet Cable Amazon ‎CAT6-7FT-5P-BLUE Ethernet cable
Rotating Clamp for Ø1/2" Posts, 360° Continuously Adjustable, 3/16" Hex Thorlabs SWC Rotating optical post clamps
Spike & Hold Driver-0.1 TO 5 MS The Lee Co. IECX0501350A Solenoid valve driver
Swivel Base Adapter Thorlabs UPHA Post holder adapter
USB 2.0 A-Male to Micro B Cable, 6 feet Amazon ‎7T9MV4 USB2 type A to USB2 micro cable
USB 2.0 Printer Cable – A-Male to B-Male, 6 Feet (1.8 m) Amazon B072L34SZS USB2 type B to USB2 type A cable
VHS-M/SP-12 V The Lee Co. INKX0514900A Solenoid valve
Zinc-Plated Steel 1/4" washer, OD 1.000" McMaster Carr 91090A108 Washers

Referencias

  1. McCormick, D. A., Lavond, D. G., Clark, G. A., Kettner, R. E., Rising, C. E., Thompson, R. F. The engram found? Role of the cerebellum in classical conditioning of nictitating membrane and eyelid responses. Bulletin of the Psychonomic Society. 18 (3), 103-105 (1981).
  2. McCormick, D. A., Clark, G. A., Lavond, D. G., Thompson, R. F. Initial localization of the memory trace for a basic form of learning. Proceedings of the National Academy of Sciences of the United States of America. 79 (8), 2731-2735 (1982).
  3. McCormick, D. A., Thompson, R. F. Cerebellum: essential involvement in the classically conditioned eyelid response. Science. 223 (4633), 296-299 (1984).
  4. Krupa, D. J., Thompson, J. K., Thompson, R. F. Localization of a memory trace in the mammalian brain. Science. 260 (5110), 989-991 (1993).
  5. Llinás, R., Sugimori, M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. The Journal of Physiology. 305, 197-213 (1980).
  6. Mintz, M., Lavond, D. G., Zhang, A. A., Yun, Y., Thompson, R. F. Unilateral inferior olive NMDA lesion leads to unilateral deficit in acquisition and retention of eyelid classical conditioning. Behavioral and Neural Biology. 61 (3), 218-224 (1994).
  7. Welsh, J. P., Harvey, J. A. Cerebellar lesions and the nictitating membrane reflex: performance deficits of the conditioned and unconditioned response. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 9 (1), 299-311 (1989).
  8. Mauk, M. D., Steinmetz, J. E., Thompson, R. F. Classical conditioning using stimulation of the inferior olive as the unconditioned stimulus. Proceedings of the National Academy of Sciences of the United States of America. 83 (14), 5349-5353 (1986).
  9. Steinmetz, J. E., Lavond, D. G., Thompson, R. F. Classical conditioning in rabbits using pontine nucleus stimulation as a conditioned stimulus and inferior olive stimulation as an unconditioned stimulus. Synapse. 3 (3), 225-233 (1989).
  10. Chettih, S. N., McDougle, S. D., Ruffolo, L. I., Medina, J. F. Adaptive timing of motor output in the mouse: The role of movement oscillations in eyelid conditioning. Frontiers in Integrative Neuroscience. 5, 72 (2011).
  11. Heiney, S. A., Wohl, M. P., Chettih, S. N., Ruffolo, L. I., Medina, J. F. Cerebellar-dependent expression of motor learning during eyeblink conditioning in head-fixed mice. The Journal of Neuroscience. 34 (45), 14845-14853 (2014).
  12. Heiney, S. A., Kim, J., Augustine, G. J., Medina, J. F. Precise control of movement kinematics by optogenetic inhibition of purkinje cell activity. Journal of Neuroscience. 34 (6), 2321-2330 (2014).
  13. Ten Brinke, M. M., et al. Evolving models of pavlovian conditioning: Cerebellar cortical dynamics in awake behaving mice. Cell Reports. 13 (9), 1977-1988 (2015).
  14. Gao, Z., et al. Excitatory cerebellar nucleocortical circuit provides internal amplification during associative conditioning. Neuron. 89 (3), 645-657 (2016).
  15. Giovannucci, A., et al. Cerebellar granule cells acquire a widespread predictive feedback signal during motor learning. Nature Neuroscience. 20 (5), 727-734 (2017).
  16. Ten Brinke, M. M., et al. Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice. eLife. 6, 28132 (2017).
  17. Wang, X., Yu, S., Ren, Z., De Zeeuw, C. I., Gao, Z. A FN-MdV pathway and its role in cerebellar multimodular control of sensorimotor behavior. Nature Communications. 11 (1), 6050 (2020).
  18. Albergaria, C., Silva, N. T., Pritchett, D. L., Carey, M. R. Locomotor activity modulates associative learning in mouse cerebellum. Nature Neuroscience. 21 (5), 725-735 (2018).
  19. Kim, O. A., Ohmae, S., Medina, J. F. A cerebello-olivary signal for negative prediction error is sufficient to cause extinction of associative motor learning. Nature Neuroscience. 23 (12), 1550-1554 (2020).
  20. Yamada, T., et al. Sensory experience remodels genome architecture in neural circuit to drive motor learning. Nature. 569 (7758), 708-713 (2019).
  21. Horlington, M. Startle response circadian rhythm in rats: lack of correlation with motor activity. Physiology & Behavior. 5 (1), 49-53 (1970).
  22. Yeomans, J. S., Li, L., Scott, B. W., Frankland, P. W. Tactile, acoustic and vestibular systems sum to elicit the startle reflex. Neuroscience and Biobehavioral Reviews. 26 (1), 1-11 (2002).
  23. . Raspberry Pi Operating system images Available from: https://www.raspberrypi.com/software/operationg-systems/ (2021)
  24. . VNC Server. VNC® Connect Available from: https://www.realvnc.com/en/connect/download/vnc/ (2021)
  25. . Anaconda: The world’s most popular data science platform Available from: https://xddebuganaconda.xdlab.co/ (2021)
  26. De Zeeuw, C. I., Ten Brinke, M. M. Motor learning and the cerebellum. Cold Spring Harbor Perspectives in Biology. 7 (9), 021683 (2015).
  27. Badura, A., et al. Normal cognitive and social development require posterior cerebellar activity. eLife. 7, 36401 (2018).
  28. Koekkoek, S. K. E., Den Ouden, W. L., Perry, G., Highstein, S. M., De Zeeuw, C. I. Monitoring kinetic and frequency-domain properties of eyelid responses in mice with magnetic distance measurement technique. Journal of Neurophysiology. 88 (4), 2124-2133 (2002).
  29. Kloth, A. D., et al. Cerebellar associative sensory learning defects in five mouse autism models. eLife. 4, 06085 (2015).
  30. Boele, H. -. J., Koekkoek, S. K. E., De Zeeuw, C. I. Cerebellar and extracerebellar involvement in mouse eyeblink conditioning: the ACDC model. Frontiers in Cellular Neuroscience. 3, (2010).
  31. Lin, C., Disterhoft, J., Weiss, C. Whisker-signaled eyeblink classical conditioning in head-fixed Mice. Journal of Visualized Experiments: JoVE. (109), e53310 (2016).
  32. Pereira, T. D., et al. Fast animal pose estimation using deep neural networks. Nature Methods. 16 (1), 117-125 (2019).
  33. Mathis, A., et al. DeepLabCut: markerless pose estimation of user-defined body parts with deep learning. Nature Neuroscience. 21 (9), 1281-1289 (2018).

Play Video

Citar este artículo
Broussard, G. J., Kislin, M., Jung, C., Wang, S. S. -. A Flexible Platform for Monitoring Cerebellum-Dependent Sensory Associative Learning. J. Vis. Exp. (179), e63205, doi:10.3791/63205 (2022).

View Video