Cet article décrit un protocole pour déterminer les différences dans l’état redox basal et les réponses redox aux perturbations aiguës dans les neurones primaires de l’hippocampe et cortical en utilisant la microscopie vivante confocale. Le protocole peut être appliqué à d’autres types de cellules et de microscopes avec un minimum de modifications.
L’homéostasie redox mitochondriale est importante pour la viabilité et la fonction neuronales. Bien que les mitochondries contiennent plusieurs systèmes redox, le glutathion tampon redox thiol-disulfure très abondant est considéré comme un acteur central dans les défenses antioxydantes. Par conséquent, la mesure du potentiel redox du glutathion mitochondrial fournit des informations utiles sur le statut redox mitochondrial et le stress oxydatif. Glutaredoxin1-roGFP2 (Grx1-roGFP2) est un indicateur ratiométrique à base de protéine fluorescente verte (GFP) génétiquement codé du potentiel redox du glutathion qui a deux pics d’excitation sensibles à l’état redox à 400 nm et 490 nm avec un seul pic d’émission à 510 nm. Cet article explique comment effectuer une microscopie confocale vivante de Grx1-roGFP2 ciblant les mitochondries dans les neurones primaires de l’hippocampe et du cortical. Il décrit comment évaluer le potentiel redox du glutathion mitochondrial à l’état d’équilibre (par exemple, pour comparer les états pathologiques ou les traitements à long terme) et comment mesurer les changements redox lors des traitements aigus (en utilisant le médicament excitotoxique N-méthyl-D-aspartate (NMDA) à titre d’exemple). En outre, l’article présente la co-imagerie de Grx1-roGFP2 et de l’indicateur de potentiel de la membrane mitochondriale, la tétraméthylrhodamine, ester éthylique (TMRE), pour démontrer comment Grx1-roGPF2 peut être multiplexé avec des indicateurs supplémentaires pour les analyses multiparamétriques. Ce protocole fournit une description détaillée de la façon de (i) optimiser les réglages du microscope confocal à balayage laser, (ii) appliquer des médicaments pour la stimulation suivis d’un étalonnage du capteur avec du diamide et du dithiothréitol, et (iii) analyser les données avec ImageJ / FIJI.
Plusieurs enzymes mitochondriales et molécules de signalisation importantes sont soumises à la régulation redox thiol1. De plus, les mitochondries sont une source cellulaire majeure d’espèces réactives de l’oxygène et sont sélectivement vulnérables aux dommages oxydatifs2. En conséquence, le potentiel redox mitochondrial affecte directement la bioénergétique, la signalisation cellulaire, la fonction mitochondriale et, en fin de compte, la viabilité cellulaire3,4. La matrice mitochondriale contient de grandes quantités (1-15 mM) de glutathion tampon redox thiol-disulfure (GSH) pour maintenir l’homéostasie redox et monter des défenses antioxydantes5,6. Le GSH peut être attaché de manière covalente aux protéines cibles (S-glutathionylation) pour contrôler leur statut et leur activité redox et est utilisé par une gamme d’enzymes détoxifiantes qui réduisent les protéines oxydées. Par conséquent, le potentiel redox du glutathion mitochondrial est un paramètre très informatif lors de l’étude de la fonction mitochondriale et de la physiopathologie.
roGFP2 est une variante de GFP qui a été rendue redox-sensible par l’ajout de deux cystéines exposées à la surface qui forment une paire artificielle dithiol-disulfure7,8. Il a un seul pic d’émission à ~510 nm et deux pics d’excitation à ~400 nm et 490 nm. Il est important de noter que les amplitudes relatives des deux pics d’excitation dépendent de l’état redox de roGFP2 (Figure 1), ce qui fait de cette protéine un capteur ratiométrique. Dans le capteur Grx1-roGFP2, la glutarédoxine-1 humaine (Grx1) a été fusionnée à la terminaison N de roGFP29,10. La fixation covalente de l’enzyme Grx1 à roGFP2 offre deux améliorations majeures du capteur : elle rend la réponse du capteur spécifique pour la paire redox GSH/GSSG glutathion (Figure 1), et elle accélère l’équilibrage entre GSSG et roGFP2 d’un facteur d’au moins 100 0009. Par conséquent, Grx1-roGFP2 permet une imagerie spécifique et dynamique du potentiel redox cellulaire du glutathion.
L’imagerie Grx1-roGFP2 peut être réalisée sur une large gamme de microscopes, y compris les microscopes à fluorescence à grand champ, les microscopes confocaux à disque rotatif et les microscopes confocaux à balayage laser. L’expression du capteur dans les neurones primaires peut être obtenue par diverses méthodes, notamment la lipofection11, la coprécipitation ADN/calcium-phosphate12, le transfert de gènes médié par le virus ou l’utilisation d’animaux transgéniques comme source cellulaire (Figure 2). Des virus adéno-associés recombinants pseudotypés (rAAV) contenant un rapport de 1:1 de protéines de capside AAV1 et AAV2 13,14 ont été utilisés pour les expériences de cet article. Avec ce vecteur, l’expression maximale du capteur est généralement atteinte 4 à 5 jours après l’infection et reste stable pendant au moins deux semaines. Nous avons utilisé avec succès Grx1-roGFP2 dans les neurones primaires de l’hippocampe et du cortical de souris et de rats.
Dans cet article, l’expression médiée par le rAAV de Grx1-roGFP2 ciblé par les mitochondries dans les neurones hippocampiques et corticaux primaires du rat est utilisée pour évaluer l’état redox du glutathion mitochondrial basal et sa perturbation aiguë. Un protocole est fourni pour l’imagerie confocale en direct avec des instructions détaillées sur la façon (i) d’optimiser les paramètres du microscope confocal à balayage laser, (ii) d’exécuter une expérience d’imagerie en direct et (iii) d’analyser les données avec FIJI.
Les mesures quantitatives et dynamiques de l’état redox mitochondrial fournissent des informations importantes sur la physiologie mitochondriale et cellulaire. Plusieurs sondes chimiques fluorogéniques sont disponibles pour détecter les espèces réactives de l’oxygène, le « stress redox » ou le « stress oxydatif ». Cependant, ces derniers termes ne sont pas bien définis et manquent souvent de spécificité9,17,18.</s…
The authors have nothing to disclose.
Ce travail a été soutenu par la Deutsche Forschungsgemeinschaft (BA 3679/5-1; POUR 2289: BA 3679/4-2). A.K. est soutenu par une bourse ERASMUS+. Nous remercions Iris Bünzli-Ehret, Rita Rosner et Andrea Schlicksupp pour la préparation des neurones primaires. Nous remercions le Dr Tobias Dick d’avoir fourni pLPCX-mito-Grx1-roGFP2. Les expériences illustrées à la figure 4 ont été réalisées au Nikon Imaging Center de l’Université de Heidelberg. La figure 2 a été préparée avec BioRender.com.
reagents | |||
Calcium chloride (CaCl2·2H2O) | Sigma-Aldrich | C3306 | |
Diamide (DA) | Sigma-Aldrich | D3648 | |
Dithiothreitol (DTT) | Carl Roth GmbH | 6908.1 | |
Glucose (2.5 M stock solution) | Sigma-Aldrich | G8769 | |
Glucose | Sigma-Aldrich | G7528 | |
Glycine | neoFroxx GmbH | LC-4522.2 | |
HEPES (1 M stock solution) | Sigma-Aldrich | 15630-080 | |
HEPES | Sigma-Aldrich | H4034 | |
Magnesium chloride (MgCl2·6H2O) | Sigma-Aldrich | 442611-M | |
N-methyl-D-aspartate (NMDA) | Sigma-Aldrich | M3262 | |
Potassium chloride (KCl) | Sigma-Aldrich | P3911 | |
Sodium chloride (NaCl) | neoFroxx GmbH | LC-5932.1 | |
Sodium pyruvate (0.1 M stock solution) | Sigma-Aldrich | S8636 | |
Sodium pyruvate | Sigma-Aldrich | P8574 | |
Sucrose | Carl Roth GmbH | 4621.1 | |
Tetramethylrhodamine ethyl ester perchlorate (TMRE) | Sigma-Aldrich | 87917 | |
equipment | |||
imaging chamber | Life Imaging Services (Basel, Switzerland) | 10920 | Ludin Chamber Type 3 for Ø12mm coverslips |
laser scanning confocal microscope, microscope | Leica | DMI6000 | |
laser scanning confocal microscope, scanning unit | Leica | SP8 | |
peristaltic pump | VWR | PP1080 181-4001 | |
spinning disc confocal microscope, camera | Hamamatsu | C9100-02 EMCCD | |
spinning disc confocal microscope, incubationsystem | TokaiHit | INU-ZILCF-F1 | |
spinning disc confocal microscope, microscope | Nikon | Ti microscope | |
spinning disc confocal microscope, scanning unit | Yokagawa | CSU-X1 | |
software | |||
FIJI | https://fiji.sc | ||
StackReg plugin | https://github.com/fiji-BIG/StackReg/blob/master/src/main/java/StackReg_.java | ||
TurboReg plugin | https://github.com/fiji-BIG/TurboReg/blob/master/src/main/java/TurboReg_.java |