Detaillierte Schritt-für-Schritt-Protokolle werden hier beschrieben, um mechanische Signale in vitro mit multipotenten O9-1-Neuralleistenzellen und Polyacrylamid-Hydrogelen unterschiedlicher Steifigkeit zu untersuchen.
Neuralleistenzellen (NCCs) sind embryonale multipotente Zellen von Wirbeltieren, die in eine Vielzahl von Zelltypen wandern und differenzieren können, aus denen verschiedene Organe und Gewebe hervorgehen. Gewebesteifigkeit erzeugt mechanische Kraft, ein physikalischer Hinweis, der eine entscheidende Rolle bei der NCC-Differenzierung spielt; Der Mechanismus bleibt jedoch unklar. Die hier beschriebene Methode liefert detaillierte Informationen für die optimierte Erzeugung von Polyacrylamid-Hydrogelen unterschiedlicher Steifigkeit, die genaue Messung einer solchen Steifigkeit und die Bewertung der Wirkung mechanischer Signale in O9-1-Zellen, einer NCC-Linie, die in vivo NCCs nachahmt.
Die Hydrogelsteifigkeit wurde mittels Rasterkraftmikroskopie (AFM) gemessen und zeigte entsprechend unterschiedliche Steifigkeitsstufen an. O9-1 NCCs, die auf Hydrogelen unterschiedlicher Steifigkeit kultiviert wurden, zeigten eine unterschiedliche Zellmorphologie und Genexpression von Stressfasern, was auf unterschiedliche biologische Effekte hinwies, die durch mechanische Signaländerungen verursacht wurden. Darüber hinaus wurde festgestellt, dass die Variation der Hydrogelsteifigkeit zu einem effizienten In-vitro-System führte, um die mechanische Signalgebung zu manipulieren, indem die Gelsteifigkeit verändert und die molekulare und genetische Regulation in NCCs analysiert wurde. O9-1 NCCs können sich unter dem Einfluss der entsprechenden Differenzierungsmedien in eine Vielzahl von Zelltypen differenzieren, und es ist praktisch, chemische Signale in vitrozu manipulieren. Daher ist dieses In-vitro-System ein leistungsfähiges Werkzeug, um die Rolle der mechanischen Signalgebung in NCCs und ihre Wechselwirkung mit chemischen Signalen zu untersuchen, was den Forschern helfen wird, die molekularen und genetischen Mechanismen der Neuralleistenentwicklung und -krankheiten besser zu verstehen.
Neuralleistenzellen (NCCs) sind eine Gruppe von Stammzellen während der Embryogenese von Wirbeltieren mit einer bemerkenswerten Fähigkeit zu wandern und zur Entwicklung verschiedener Organe und Gewebe beizutragen. NCCs können sich in verschiedene Zelltypen differenzieren, einschließlich sensorischer Neuronen, Knorpel, Knochen, Melanozyten und glatter Muskelzellen, abhängig von der Lage des axialen Ursprungs und der lokalen Umweltführung des NCC1,2. Mit der Fähigkeit, sich in eine Vielzahl von Zelltypen zu differenzieren, können genetische Anomalien, die in jedem Stadium der Neuralleistenentwicklung (NC) eine Dysregulation verursachen, zu zahlreichen angeborenen Erkrankungen führen2. Zum Beispiel führen Störungen während der Bildung, Migration und Entwicklung von NCCs zu Entwicklungsstörungen, die zusammen als Neurokristopathien1,3bekannt sind. Diese Krankheiten reichen von kraniofazialen Defekten aufgrund eines Versagens der NCC-Bildung, wie dem Treacher-Collins-Syndrom, bis hin zur Entwicklung verschiedener Krebsarten aufgrund der metastasierenden Migrationsfähigkeit des NCC, wie sie beim Melanom3,4,5,6beobachtet wird . In den letzten Jahrzehnten haben Forscher bemerkenswerte Entdeckungen über die Rollen und Mechanismen von NCCs in der Entwicklung und bei Krankheiten gemacht, wobei sich die Mehrheit der Ergebnisse auf chemische Signale konzentriert7,8. In jüngerer Zeit wurde darauf hingewiesen, dass mechanische Signale eine kritische, aber wenig verstandene Rolle in der NCC-Entwicklungspielen 9,10.
Die Umwelthinweise von NCCs spielen während ihrer Entwicklung eine entscheidende Rolle, einschließlich der Regulierung der NCC-Differenzierung in verschiedene Zelltypen. Umwelteinflüsse, z. B. physikalische Hinweise, beeinflussen das entscheidende Verhalten und die zellulären Reaktionen, wie z. B. die funktionelle Diversifizierung. Die Mechanotransduktion ermöglicht es den Zellen, diese Hinweise zu spüren und darauf zu reagieren, um verschiedene biologische Prozesse aufrechtzuerhalten2. NCCs sind von benachbarten Zellen und verschiedenen Substraten wie der extrazellulären Matrix (ECM) umgeben, die mechanische Reize hervorrufen können, um die Homöostase aufrechtzuerhalten und sich durch Schicksalsbestimmung, Proliferation und Apoptose an die Veränderungen anzupassen11. Die Mechanotransduktion beginnt an der Plasmamembran, wo die sensorische Komponente mechanischer extrazellulärer Reize auftritt, was zur intrazellulären Regulation der Zelleführt 12. Integrine, fokale Adhäsionen und Verbindungen der Plasmamembran leiten mechanische Signale wie Scherkräfte, Spannung und Steifigkeit der umgebenden Substrate in chemische Signale um, um zelluläre Reaktionen zu erzeugen12. Die Weiterleitung chemischer Signale von der Plasmamembran zur endgültigen zellulären Regulation erfolgt über verschiedene Signalwege, um lebenswichtige Prozesse für den Organismus, wie z.B. die Differenzierung, abzuschließen.
Mehrere Studien haben gezeigt, dass die mechanische Signalübertragung aus der Substratsteifigkeit eine Rolle bei der Zelldifferenzierung spielt13,14. Zum Beispiel haben frühere Studien gezeigt, dass mesenchymale Stammzellen (MSCs), die auf weichen Substraten mit einer Steifigkeit ähnlich der von Hirngewebe (im Bereich von 0,1-1,0 kPa) gezüchtet wurden, zu einer neuronalen Zelldifferenzierung führten15,16. Allerdings differenzieren sich mehr MSCs in myozytenähnliche Zellen, wenn sie auf 8-17 kPa-Substraten gezüchtet werden, die die Steifigkeit des Muskels nachahmen, während osteoblastenartige Differenzierung beobachtet wurde, wenn MSCs auf steifen Substraten kultiviert wurden (25-40 kPa)15,16. Die Bedeutung der Mechanotransduktion wird durch die Unregelmäßigkeiten und Anomalien im mechanischen Signalweg hervorgehoben, die möglicherweise zu schweren Entwicklungsdefekten und -krankheiten führen, einschließlich Krebs, Herz-Kreislauf-Erkrankungen und Osteoporose17,18,19. Bei Krebserkrankungen ist normales Brustgewebe weich, und das Brustkrebsrisiko steigt in steifem und dichtem Brustgewebe, einer Umgebung, die eher Brusttumorenähnelt 15. Mit diesem Wissen können die Auswirkungen der mechanischen Signalgebung auf die NCC-Entwicklung durch einfache Manipulation der Substratsteifigkeit durch ein In-vitro-System untersucht werden, was weitere Vorteile und Möglichkeiten zum Verständnis der Grundlagen des NC-bedingten Krankheitsverlaufs und der Ätiologie bietet.
Um den Einfluss mechanischer Signale in NCCs zu untersuchen, haben wir ein effizientes In-vitro-System für NCCs etabliert, das auf der Optimierung zuvor veröffentlichter Methoden und der Bewertung der Reaktionen von NCCs auf verschiedene mechanische Signale basiert20,21. Es wurde ein detailliertes Protokoll für die unterschiedliche Vorbereitung der Hydrogelsteifigkeit und die Bewertung der Auswirkungen der mechanischen Signalgebung in NCCs bereitgestellt. Um dies zu erreichen, werden O9-1 NCCs als NC-Modell verwendet, um die Auswirkungen und Veränderungen als Reaktion auf steife gegenüber weichen Hydrogelen zu untersuchen. O9-1 NCCs sind eine stabile NC-Zelllinie, die am Tag 8.5 aus dem Mausembryo (E) isoliert wurde. O9-1 NCCs ahmen NCCs in vivo nach, weil sie sich in definierten Differenzierungsmedien in verschiedene NC-abgeleitete Zelltypen differenzieren können22. Um die mechanische Signalisierung von NCCs zu untersuchen, wurde ein Matrixsubstrat mit abstimmbarer Elastizität aus unterschiedlichen Konzentrationen von Acrylamid- und Bisacrylamidlösungen hergestellt, um die gewünschte Steifigkeit zu erreichen, die der biologischen Substratsteifigkeit20,21,23entspricht. Um die Bedingungen des Matrixsubstrats für NCCs, insbesondere O9-1-Zellen, zu optimieren, wurden Modifikationen aus dem zuvor veröffentlichten Protokoll20vorgenommen. Eine Änderung in diesem Protokoll bestand darin, Hydrogele in Kollagen I, verdünnt in 0,2% Essigsäure anstelle von 50 mM HEPES, bei 37 ° C über Nacht zu inkubieren. Der niedrige pH-Wert der Essigsäure führt zu einer homogenen Verteilung und einem höheren Kollagen-I-Einbau, wodurch eine gleichmäßigere Bindung des ECM-Proteins24ermöglicht wird. Darüber hinaus wurde eine Kombination aus Pferdeserum und fetalem Rinderserum (FBS) in Konzentrationen von 10% bzw. 5% in Phosphatpuffersalzlösung (PBS) verwendet, bevor die Hydrogele im Inkubator gelagert wurden. Pferdeserum wurde als zusätzliche Ergänzung zu FBS aufgrund seiner Fähigkeit verwendet, die Zellproliferation und -differenzierung bei einer Konzentration von 10% zu fördern25.
Mit dieser Methode wurde eine biologische Umgebung durch die ECM-Proteinbeschichtung (z. B. Kollagen I) nachgeahmt, um eine genaue In-vitro-Umgebung für NCCs zu schaffen, um zu wachsen und zu überleben20,21. Die Steifigkeit der präparierten Hydrogele wurde mittels Rasterkraftmikroskopie (AFM), einer bekannten Technik zur Darstellung des Elastizitätsmoduls26,quantitativ analysiert. Um die Wirkung unterschiedlicher Steifigkeitsniveaus auf NCCs zu untersuchen, wurden Wildtyp-O9-1-Zellen kultiviert und auf Hydrogelen für die Immunfluoreszenz (IF) -Färbung gegen filamentöses Aktin (F-Aktin) vorbereitet, um die Unterschiede in der Zelladhäsion und Morphologie als Reaktion auf Veränderungen der Substratsteifigkeit zu zeigen. Mit diesem In-vitro-System werden die Forscher in der Lage sein, die Rolle der mechanischen Signalgebung in NCCs und ihre Wechselwirkung mit anderen chemischen Signalen zu untersuchen, um ein tieferes Verständnis der Beziehung zwischen NCCs und mechanischer Signalgebung zu erlangen.
Ziel der aktuellen Studie ist es, ein effektives und effizientes In-vitro-System bereitzustellen, um die Auswirkungen mechanischer Signale in NCCs besser zu verstehen. Zusätzlich zur Befolgung des oben genannten Schritt-für-Schritt-Protokolls müssen die Forscher bedenken, dass die Zellkultur von O9-1-NCCs von der Art der Glasdeckgläser beeinflusst wird, die zur Herstellung von Hydrogelen verwendet werden. Zum Beispiel wurde festgestellt, dass Zellen, die auf einer bestimmten Art von Glasdeckglas gesät wurde…
The authors have nothing to disclose.
Wir danken Dr. Ana-Maria Zaske, Betreiberin der Atomic Force Microscope-UT Core-Anlage am Health Sciences Center der University of Texas, für die in diesem Projekt beigebrachte Expertise in AFM. Wir danken auch den Finanzierungsquellen der National Institutes of Health (K01DE026561, R03DE025873, R01DE029014, R56HL142704 und R01HL142704 an J. Wang).
12 mm #1 Corning 0211 Glass Coverslip | Chemglass Life Sciences | CLS-1763-012 | |
2% Bis-Acrylamide | Sigma Aldrich | M1533 | |
24-well plate | Greiner Bio-one | 662165 | |
25 mm #1 Corning 0211 Glass Coverslip | Chemglass Life Sciences | CLS-1763-025 | |
3-aminopropyl triethoxysilane (APTS) | Sigma Aldrich | A3648 | |
4-well cell culture plate | Thermo Scientific | 179830 | |
4% Paraformaldehyde | Sigma Aldrich | J61899-AP | |
40% Acrylamide | Sigma Aldrich | A4058 | |
50% glutaraldehyde | Sigma Aldrich | G7651 | |
6-well cell culture plate | Greiner Bio-one | 657160 | |
AFM cantilever (spherical bead) | Novascan | ||
AFM software | Catalyst NanoScope | Model: 8.15 SR3R1 | |
Alexa Fluor 488 Phalloidin | Thermo Fisher | A12379 | |
Ammonium Persulfate (APS) | Sigma Aldrich | 248614 | Powder |
anti-AP-2α Antibody | Santa Cruz | sc-12726 | |
anti-Vinculin antibody | Abcam | ab129002 | |
Atomic Force Microscopy (AFM) Bioscope Catalyst | Bruker Corporation | ||
Collagen type I (100mg) | Corning | 354236 | |
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) | Thermo Fisher | D1306 | |
Dichloromethylsilane (DCMS) | Sigma Aldrich | 440272 | |
Donkey serum | Sigma Aldrich | D9663 | |
Dulbecco's Modified Eagle Medium (DMEM) | Corning | 10-017-CV | |
Fetal bovine serum (FBS) | Corning | 35-010-CV | |
Fluorescence microscope | Leica | Model DMi8 | |
Fluoromount-G mounting medium | SouthernBiotech | 0100-35 | |
HEPES | Sigma Aldrich | H3375 | Powder |
Horse serum | Corning | 35-030-CI | |
iScript Reverse Transcription Supermix | Bio-Rad | 1708841 | |
Penicillin-Streptomycin antibiotic | Thermo Fisher | 15140148 | |
RNeasy micro kit | Qiagen | 74004 | |
Sterile 1x PBS | Hyclone | SH30256.02 | |
Sterile deionized water | Hardy Diagnostics | U284 | |
sulfo-SANPAH | Thermo Fisher | 22589 | |
SYBR green | Applied Biosystems | 4472908 | |
TEMED | Sigma Aldrich | T9281 | |
Triton X-100 | Sigma Aldrich | X100 | |
Tween 20 | Sigma Aldrich | P9416 |