Il protocollo delineato descrive la procedura per la produzione del complesso proteico del dominio legante il recettore HiBiT e la sua applicazione per il rilevamento rapido e sensibile degli anticorpi SARS-CoV-2.
L’emergere della pandemia di COVID-19 ha aumentato la necessità di migliori metodi di rilevamento sierologico per determinare l’impatto epidemiologico della sindrome respiratoria acuta grave coronavirus 2 (SARS-CoV-2). Il crescente numero di infezioni da SARS-CoV-2 solleva la necessità di migliori test di rilevamento degli anticorpi. Gli attuali metodi di rilevamento degli anticorpi compromettono la sensibilità per la velocità o sono sensibili ma richiedono molto tempo. Una grande percentuale di anticorpi neutralizzanti SARS-CoV-2 prende di mira il dominio di legame del recettore (RBD), uno dei compartimenti immunogenici primari di SARS-CoV-2. Recentemente abbiamo progettato e sviluppato un RBD (NanoLuc HiBiT-RBD) altamente sensibile e bioluminescente per rilevare gli anticorpi SARS-CoV-2. Il testo seguente descrive la procedura per produrre il complesso HiBiT-RBD e un test rapido per valutare la presenza di anticorpi mirati alla RBD utilizzando questo strumento. A causa della durata del prodotto proteico HiBiT-RBD su un’ampia gamma di temperature e della procedura sperimentale più breve che può essere completata entro 1 ora, il protocollo può essere considerato un’alternativa più efficiente per rilevare gli anticorpi SARS-CoV-2 nei campioni di siero dei pazienti.
La recente comparsa di un nuovo coronavirus, SARS-CoV21, ha causato oltre 2.800.000 morti e 128 milioni di infezioni al 30 marzo 20212. A causa della mancanza di una procedura di trattamento affidabile e consolidata per le terapie cliniche SARS-CoV-2, sono stati fatti molti sforzi per limitare l’ulteriore trasmissione virale e, cosa più importante, per sviluppare un trattamento efficace e robusto o un vaccino3. Ad oggi, ci sono più di 50 candidati vaccini COVID-19 in studi segnalati dall’Organizzazione Mondiale della Sanità4. Il rilevamento di anticorpi contro SARS-CoV-2 è di fondamentale importanza per determinare la stabilità a lungo termine della risposta umorale alla somministrazione del vaccino e nei pazienti guariti di COVID-195. Alcuni studi hanno dimostrato che esiste la possibilità che i pazienti con SARS-CoV-2 recuperati perdano la maggior parte degli anticorpi che legano RBD dopo 1 anno5,6,7,8,9. Sono necessarie ulteriori indagini per comprendere meglio l’immunità duratura e piattaforme di rilevamento degli anticorpi più sensibili possono aiutare ulteriormente tale lavoro. Anche le segnalazioni di immunità sostenuta di infezioni lievi da SARS-CoV-2, che suggeriscono risposte anticorpali a lungo termine, sono un’area di studio interessante e utile. Un metodo di rilevamento rapido e accurato è essenziale per il monitoraggio degli anticorpi nei sieri degli individui per fornire maggiori informazioni sull’immunità nella popolazione.
Come altri coronavirus, SARS-CoV-2 utilizza la glicoproteina spike sporgente per legarsi all’enzima-2 di conversione dell’angiotensina (ACE2) per avviare una cascata di eventi che portano alla fusione delle membrane virali e cellulari6,7. Diversi studi hanno recentemente dimostrato che l’RBD della proteina Spike ha un ruolo cruciale nell’suscitare una risposta anticorpale potente e specifica contro SARS-CoV28,9,10,11. In particolare, le correlazioni osservate da Premkumar et al. tra il titolo dell’anticorpo legante RBD e la potenza di neutralizzazione sars-CoV-2 del plasma dei pazienti sono coerenti con RBD come compartimento immunogenico della struttura del virus9. Con questo in mente, molti test diagnostici disponibili per il rilevamento degli anticorpi SARS-CoV-2 richiedono tempo e costi, richiedono una lunga procedura di incubazione e lavaggio (saggio immunoassorbente enzimatico [ELISA]) o mancano di sensibilità e accuratezza (saggio immunologico a flusso laterale [LFIA])12. Pertanto, un metodo sierologico complementare quantitativo e rapido di rilevamento degli anticorpi derivati da COVID-19 con elevata sensibilità, risposta rapida e costo relativamente basso servirebbe alla necessità di un test sierologico affidabile per la sorveglianza epidemiologica sars-CoV-2.
Collettivamente, i limiti degli attuali saggi sierologici hanno spinto lo studio del sistema di segnalazione bioluminescente come potenziale agente diagnostico in future indagini sierosoratorie. La bioluminescenza è una reazione enzima/substrato naturale, con emissione luminosa. La nanoluc luciferasi è la più piccola (19 kDa), ma il sistema più luminoso rispetto alla Renilla e alla lucciola luciferasi (36 kDa e 61 kDa, rispettivamente)13,14. Inoltre, Nanoluc ha il più alto rapporto segnale/rumore e stabilità tra i sistemi precedentemente menzionati. L’elevata intensità del segnale di Nanoluc supporta il rilevamento anche di quantità molto basse di fusioni di reporter15. Nanoluc Binary Technology (NanoBiT) è una versione divisa del sistema Nanoluc, che è composto da due segmenti: piccolo BiT (11 amminoacidi; SmBiT) e BiT di grandi dimensioni (LgBiT) con interazioni di affinità relativamente bassa (KD = 190 μM ) per formare un complesso luminescente16. NanoBiT è ampiamente utilizzato in vari studi che coinvolgono l’identificazione delle interazioni proteina-proteina15,17,18,19 e delle vie di segnalazione cellulare11,20,21.
Recentemente, è stato introdotto un altro piccolo peptide con un’affinità nettamente superiore a LgBiT (KD = 0,7 nM ), vale a dire il sistema HiBiT Nano-Glo, al posto di SmBiT. L’alta affinità e il segnale forte del test Nano-Glo “add-mix-read” rendono HiBiT un tag peptidico adatto, quantitativo e luminescente. In questo approccio, il tag HiBiT viene aggiunto alla proteina bersaglio sviluppando un costrutto che impone interferenze strutturali minime. La fusione HiBiT-proteina si legherebbe attivamente alla controparte LgBiT, producendo un enzima luciferasi altamente attivo per generare bioluminescenza rilevabile in presenza di reagenti di rilevamento (Figura 1). Allo stesso modo, abbiamo sviluppato un sistema basato su HiBiT Nano-Glo per misurare prontamente il titolo anticorpale neutralizzante nei sieri di individui recuperati da SARS-CoV-2 e recentemente abbiamo sviluppato un RBD SARS-CoV-2 con tag HiBiT. Questo documento descrive il protocollo per la produzione del bioreporter HiBiT-RBD utilizzando procedure e apparecchiature di laboratorio standard e mostra come questo bioreporter può essere utilizzato in un test rapido ed efficiente per rilevare gli anticorpi mirati a SARS-CoV-2 RBD.
Il crescente numero di persone infette da SARS-CoV-2 e lo sforzo in corso per la vaccinazione globale richiedono test sierologici sensibili e veloci che possono essere utilizzati in indagini sierologiche su larga scala. Recenti ricerche dimostrano che i bioreporter a base di nanoluciferasi split possono essere utilizzati per sviluppare tali saggi. Recentemente abbiamo sviluppato il bioreporter HiBiT-RBD per progettare un test che possa essere utilizzato per rilevare gli anticorpi specifici di SARS-CoV-2 nel siero del paz…
The authors have nothing to disclose.
Apprezziamo e ringraziamo l’assistenza tecnica di Xiaohong He, Ricardo Marius, Julia Petryk, Bradley Austin e Christiano Tanese De Souza. Ringraziamo anche Mina Ghahremani per il Graphic Design. Vorremmo anche ringraziare tutte le persone che hanno partecipato e donato i loro campioni di sangue per questo studio. DWC è supportato in parte dalla Facoltà di uOttawa e dal Dipartimento di Medicina.
5x Passive Lysis Buffer | Promega | E194A | 30 mL |
Bio-Plex Handheld Magnetic Washer | Bio-Rad | 171020100 | |
DMEM | Sigma | D6429-500ml | |
Dual-Glo luciferase Assay System | Promega | E2940 | 100 mL kit |
Fetal Bovine Serum (FBS) | Sigma | F1051 | |
HiBiT-RBD Plasmid | gacggatcgggagatctcccgatcccctatggt gcactctcagtacaatctgctctgatgccgcata gttaagccagtatctgctccctgcttgtgtgttgg aggtcgctgagtagtgcgcgagcaaaattta agctacaacaaggcaaggcttgaccgacaa ttgcatgaagaatctgcttagggttaggcgttttg cgctgcttcgcgatgtacgggccagatatacgc gttgacattgattattgactagttattaatagt aatcaattacggggtcattagttcatagcccat atatggagttccgcgttacataacttacggtaa atggcccgcctggctgaccgcccaacgaccc ccgcccattgacgtcaataatgacgtatgttccc atagtaacgccaatagggactttccattgacgtc aatgggtggagtatttacggtaaactgcccact tggcagtacatcaagtgtatcatatgccaagta cgccccctattgacgtcaatgacggtaaatgg cccgcctggcattatgcccagtacatgaccttat gggactttcctacttggcagtacatctacgtat tagtcatcgctattaccatggtgatgcggtttt ggcagtacatcaatgggcgtggatagcggtttg actcacggggatttccaagtctccaccccattg acgtcaatgggagtttgttttggcaccaaaatc aacgggactttccaaaatgtcgtaacaactccg ccccattgacgcaaatgggcggtaggcgtgta cggtgggaggtctatataagcagagctctctgg ctaactagagaacccactgcttactggcttatcg aaattaatacgactcactatagggagacccaa gctggctagcgtttaaacttaagcttggtaccga gctcggatccgccaccATGGAGACAGA CACACTCCTGCTATGGGTACTGC TGCTCTGGGTTCCAGGTTCCAC TGGTGACtctggctctagcggctctggctct agcggcggcATGGTGAGCGGCTG GCGGCTGTTCAAGAAGATTAGC tctagcggcGACTACAAGGACC ACGACGGTGACTACAAGGACCA CGACATCGACTACAAGGACGAC GACGACAAGggcagcggctccggca gcagcggaggaggaggctctggaggagga ggctctagcggcggcaacatcacaaatctgtg cccattcggcgaggtgtttaacgccaccagat ttgccagcgtgtatgcctggaaccggaagaga atctctaattgcgtggccgactatagcgtgct gtacaatagcgcctccttctctacctttaagt gctatggcgtgtcccccacaaagctgaacgac ctgtgcttcaccaacgtgtacgccgactcttttgt gatcaggggcgatgaggtgcgccagatcgc acctggacagacaggcaagatcgccgactac aactataagctgccagacgatttcaccggct gcgtgatcgcctggaatagcaacaatctggatt ccaaagtgggcggcaactacaattatctgtac cggctgttcagaaagagcaacctgaagccctt tgagcgggatatcagcacagagatctaccag gcaggctccaccccttgcaacggagtggagg gcttcaattgttattttcccctgcagagctacggc ttccagcctacaaatggcgtgggctatcagcca tacagggtggtggtgctgtcctttgagctgctg cacgcacctgcaaccgtgtcctctggacacatc gagggccgccacatgctggagatgggccatc atcaccatcatcaccaccaccaccactgatag cggccgctcgagtctagagggcccgtttaaac ccgctgatcagcctcgactgtgccttctagtt gccagccatctgttgtttgcccctcccccgtg ccttccttgaccctggaaggtgccactcccac tgtcctttcctaataaaatgaggaaattgcat cgcattgtctgagtaggtgtcattctattctgggg ggtggggtggggcaggacagcaaggggga ggattgggaagacaatagcaggcatgctggg gatgcggtgggctctatggcttctgaggcggaa agaaccagctggggctctagggggtatcccca cgcgccctgtagcggcgcattaagcgcggcg ggtgtggtggttacgcgcagcgtgaccgctac acttgccagcgccctagcgcccgctcctttcg ctttcttcccttcctttctcgccacgttcgccggctt tccccgtcaagctctaaatcgggggctcccttta gggttccgatttagtgctttacggcacctcgacc ccaaaaaacttgattagggtgatggttcacgta gtgggccatcgccctgatagacggtttttcgcc ctttgacgttggagtccacgttctttaatagtg gactcttgttccaaactggaacaacactcaacc ctatctcggtctattcttttgatttataagggatttt gccgatttcggcctattggttaaaaaatgagctg atttaacaaaaatttaacgcgaattaattctgt ggaatgtgtgtcagttagggtgtggaaagtccc caggctccccagcaggcagaagtatgcaaag catgcatctcaattagtcagcaaccaggtgtgg aaagtccccaggctccccagcaggcagaagt atgcaaagcatgcatctcaattagtcagcaac catagtcccgcccctaactccgcccatcccgc ccctaactccgcccagttccgcccattctccgcc ccatggctgactaattttttttatttatgcagaggc cgaggccgcctctgcctctgagctattccagaa gtagtgaggaggcttttttggaggcctaggcttttg caaaaagctcccgggagcttgtatatccattttc ggatctgatcaagagacaggatgaggatcgttt cgcatgattgaacaagatggattgcacgcagg ttctccggccgcttgggtggagaggctattcggc tatgactgggcacaacagacaatcggctgctct gatgccgccgtgttccggctgtcagcgcagggg cgcccggttctttttgtcaagaccgacctgtccgg tgccctgaatgaactgcaggacgaggcagcg cggctatcgtggctggccacgacgggcgttcct tgcgcagctgtgctcgacgttgtcactgaagcg ggaagggactggctgctattgggcgaagtgcc ggggcaggatctcctgtcatctcaccttgctcctg ccgagaaagtatccatcatggctgatgcaatg cggcggctgcatacgcttgatccggctacctgc ccattcgaccaccaagcgaaacatcgcatcg agcgagcacgtactcggatggaagccggtct tgtcgatcaggatgatctggacgaagagcat caggggctcgcgccagccgaactgttcgcca ggctcaaggcgcgcatgcccgacggcgagg atctcgtcgtgacccatggcgatgcctgcttg ccgaatatcatggtggaaaatggccgctttt ctggattcatcgactgtggccggctgggtgt ggcggaccgctatcaggacatagcgttggct acccgtgatattgctgaagagcttggcggcg aatgggctgaccgcttcctcgtgctttacgg tatcgccgctcccgattcgcagcgcatcgcc ttctatcgccttcttgacgagttcttctgagcg ggactctggggttcgaaatgaccgaccaag cgacgcccaacctgccatcacgagatttcgat tccaccgccgccttctatgaaaggttgggctt cggaatcgttttccgggacgccggctggatga tcctccagcgcggggatctcatgctggagt tcttcgcccaccccaacttgtttattgcagctta taatggttacaaataaagcaatagcatcacaa atttcacaaataaagcatttttttcactgcatt ctagttgtggtttgtccaaactcatcaatgtat cttatcatgtctgtataccgtcgacctctagct agagcttggcgtaatcatggtcatagctgtttc ctgtgtgaaattgttatccgctcacaattccacac aacatacgagccggaagcataaagtgtaaag cctggggtgcctaatgagtgagctaactcacat taattgcgttgcgctcactgcccgctttccagtc gggaaacctgtcgtgccagctgcattaatgaa tcggccaacgcgcggggagaggcggtttgcg tattgggcgctcttccgcttcctcgctcactgactc gctgcgctcggtcgttcggctgcggcgagcggt atcagctcactcaaaggcggtaatacggttatc cacagaatcaggggataacgcaggaaagaa catgtgagcaaaaggccagcaaaaggccag gaaccgtaaaaaggccgcgttgctggcgtttt tccataggctccgcccccctgacgagcatcac aaaaatcgacgctcaagtcagaggtggcgaa acccgacaggactataaagataccaggcgtt tccccctggaagctccctcgtgcgctctcctgtt ccgaccctgccgcttaccggatacctgtccgcc tttctcccttcgggaagcgtggcgctttctcat agctcacgctgtaggtatctcagttcggtgtag gtcgttcgctccaagctgggctgtgtgcacgaa ccccccgttcagcccgaccgctgcgccttatcc ggtaactatcgtcttgagtccaacccggtaag acacgacttatcgccactggcagcagccactg gtaacaggattagcagagcgaggtatgtaggc ggtgctacagagttcttgaagtggtggcctaact acggctacactagaagaacagtatttggtatc tgcgctctgctgaagccagttaccttcggaaa aagagttggtagctcttgatccggcaaacaaa ccaccgctggtagcggtggtttttttgtttgca agcagcagattacgcgcagaaaaaaaggat ctcaagaagatcctttgatcttttctacggggt ctgacgctcagtggaacgaaaactcacgttaa gggattttggtcatgagattatcaaaaaggatct tcacctagatccttttaaattaaaaatgaagtt ttaaatcaatctaaagtatatatgagtaaactt ggtctgacagttaccaatgcttaatcagtgagg cacctatctcagcgatctgtctatttcgttcatcca tagttgcctgactccccgtcgtgtagataactac gatacgggagggcttaccatctggccccagtg ctgcaatgataccgcgagacccacgctcacc ggctccagatttatcagcaataaaccagccag ccggaagggccgagcgcagaagtggtcctg caactttatccgcctccatccagtctattaattgtt gccgggaagctagagtaagtagttcgccagtt aatagtttgcgcaacgttgttgccattgctacag gcatcgtggtgtcacgctcgtcgtttggtatgg cttcattcagctccggttcccaacgatcaaggc gagttacatgatcccccatgttgtgcaaaaaag cggttagctccttcggtcctccgatcgttgtca gaagtaagttggccgcagtgttatcactcatggt tatggcagcactgcataattctcttactgtcatg ccatccgtaagatgcttttctgtgactggtgagta ctcaaccaagtcattctgagaatagtgtatgcg gcgaccgagttgctcttgcccggcgtcaatacg ggataataccgcgccacatagcagaactttaa aagtgctcatcattggaaaacgttcttcggggc gaaaactctcaaggatcttaccgctgttgagat ccagttcgatgtaacccactcgtgcacccaact gatcttcagcatcttttactttcaccagcgtttc tgggtgagcaaaaacaggaaggcaaaatgc cgcaaaaaagggaataagggcgacacgga aatgttgaatactcatactcttcctttttcaat attattgaagcatttatcagggttattgtc tcatgagcggatacatatttgaatgtattt agaaaaataaacaaataggggttccgcgca catttccccgaaaagtgccacctgacgtc | ||
LgBiT | Promega | N3030 | |
penicillin Streptomycin | Thermo Fisher Scientific | 15140122 | |
Pierce Protein G Magnetic Beads | Thermo Fisher Scientific | 88848 | |
PolyJet In Vitro DNA Transfection Reagent | Signagen | SL100688.5 | |
SARS-CoV-2 (2019-nCoV) Spike Neutralizing Antibody, Mouse Mab | SinoBiological | 40592-MM57 | |
Synergy Mx Microplate Reader | BioTek | 96-well plate reader luminometer | |
Trypsin-EDTA | Thermo Fisher Scientific | 2520056 | 0.25% |