Het recombinante antilichaameiwit dat tot expressie komt in pIRES2-ZSGreen1-rAbs-APN-CHO-cellen en monoklonale antilichamen geproduceerd met behulp van traditionele hybridoma-technologie kan het varkensaminopeptidase N (APN) -eiwit herkennen en eraan binden.
Porcine aminopeptidase N (APN), een membraangebonden metallopeptidase dat overvloedig aanwezig is in dunne darmslijmvlies, kan een mucosale immuunrespons initiëren zonder enige interferentie zoals lage eiwitexpressie, enzyminactiviteit of structurele veranderingen. Dit maakt APN een aantrekkelijke kandidaat bij de ontwikkeling van vaccins die zich selectief richten op het slijmvliesepitheel. Eerdere studies hebben aangetoond dat APN een receptoreiwit is voor zowel enterotoxigene Escherichia coli (E. coli) F4 als overdraagbare gastro-enteritisvirus. APN is dus veelbelovend in de ontwikkeling van antilichaam-medicijnconjugaten of nieuwe vaccins op basis van APN-specifieke antilichamen. In deze studie vergeleken we de productie van APN-specifieke monoklonale antilichamen (mAbs) met behulp van traditionele hybridoma-technologie en recombinante antilichaamexpressiemethode. We hebben ook een stabiel getransfecteerde ovarium (CHO) cellijn van de Chinese hamster vastgesteld met behulp van pIRES2-ZSGreen1-rAbs-APN en een E. coli-expressie BL21 (DE3) stam met de pET28a (+)-rAbs-APN-vector. De resultaten tonen aan dat antilichamen die tot expressie komen in pIRES2-ZSGreen1-rAbs-APN-CHO-cellen en mAbs geproduceerd met behulp van hybridomen het APN-eiwit kunnen herkennen en eraan kunnen binden. Dit vormt de basis voor verdere opheldering van de APN-receptorfunctie voor de ontwikkeling van therapieën gericht op verschillende APN-specifieke epitopen.
Aminopeptidase N (APN), een maanlichtenzym dat behoort tot de metalloproteïnase M1-familie, fungeert als een tumormarker, receptor en signaalmolecuul via enzymafhankelijke en enzymonafhankelijke routes 1,2. Naast het splitsen van de N-terminale aminozuurresiduen van verschillende bioactieve peptiden voor de regulatie van hun biologische activiteit, speelt APN een belangrijke rol in de pathogenese van verschillende ontstekingsziekten. APN neemt deel aan antigeenverwerking en -presentatie door bijgesneden peptiden die stevig binden aan belangrijke histocompatibiliteitscomplex klasse II-moleculen 2,3. APN oefent ook ontstekingsremmende effecten uit door zich te binden met G-eiwit-gekoppelde receptoren die deelnemen aan meervoudige signaaltransductie, cytokinesecretie moduleren en bijdragen aan Fc-gammareceptor-gemedieerde fagocytose in de immuunrespons 4,5,6,7.
Als een wijd verspreide membraangebonden exopeptidase is APN overvloedig aanwezig in het dunne darmslijmvlies van varkens en is nauw verbonden met receptorgemedieerde endocytose 1,5,8. APN herkent en bindt het spike-eiwit van het overdraagbare gastro-enteritisvirus voor celinvoer en interageert direct met de FaeG-subeenheid van enterotoxigene Escherichia coli F4 fimbriae om bacteriële hechting met gastheercellen te beïnvloeden 9,10,11. APN is dus een potentieel therapeutisch doelwit bij de behandeling van virale en bacteriële infectieziekten.
Sinds de ontwikkeling van hybridoma-technologie en andere strategieën voor de productie van monoklonale antilichamen (mAbs) in 1975, zijn mAbs op grote schaal gebruikt in immunotherapie, medicijnafgifte en diagnose12,13,14. Momenteel worden mAbs met succes gebruikt om ziekten te behandelen, zoals kanker, inflammatoire darmaandoeningen en multiple sclerose12,15. Vanwege hun sterke affiniteit en specificiteit kunnen mAbs ideale doelwitten zijn bij de ontwikkeling van antilichaam-geneesmiddelconjugaten (ADC) of nieuwe vaccins16,17. Het APN-eiwit is van cruciaal belang voor het selectief afleveren van antigenen aan specifieke cellen en kan een specifieke en sterke mucosale immuunrespons tegen pathogenen veroorzaken zonder enige interferentie, waaronder lage eiwitexpressie, enzyminactiviteit of structurele veranderingen 5,8,18. Daarom zijn therapeutische producten op basis van APN-specifieke mAbs veelbelovend tegen bacteriële en virale infecties. In deze studie beschrijven we de productie van APN-specifieke mAbs met behulp van hybridoma-technologie en expressie van anti-APN recombinante antilichamen (rAbs) met behulp van prokaryote en eukaryote vectoren. Het resultaat geeft aan dat het APN-eiwit werd herkend door zowel rAbs uitgedrukt in pIRES2-ZSGreen1-rAbs-APN-CHO-cellen als hybridoom-afgeleide mAbs.
Inductie van mucosale immuniteit is een van de meest effectieve benaderingen bij het tegengaan van pathogenen en bij het voorkomen en behandelen van verschillende ziekten. APN, een sterk tot expressie gebracht membraangebonden eiwit in het darmslijmvlies, is betrokken bij de inductie van adaptieve immuunrespons en bij receptorgemedieerde virale en bacteriële endocytose 1,5,8. APN wordt gebruikt als antigeendeeltjes in vele form…
The authors have nothing to disclose.
Deze studie werd ondersteund door de Chinese National Science Foundation Grant (nr. 32072820, 31702242), subsidies van Jiangsu Government Scholarship for Overseas Studies (JS20190246) en High-level Talents van Yangzhou University Scientific Research Foundation, een project opgericht door het Priority Academic Program of Development Jiangsu High Education Institution.
Complete Freund’s adjuvant | Sigma-Aldrich | F5881 | Animal immunization |
DAPI | Beyotime Biotechnology | C1002 | Nuclear counterstain |
DMEM | Gibco | 11965092 | Cell culture |
DMEM-F12 | Gibco | 12634010 | Cell culture |
Dylight 549-conjugated goat anti-mouse IgG secondary antibody | Abbkine | A23310 | Indirect immunofluorescence analysis |
Enhanced Cell Counting Kit-8 | Beyotime Biotechnology | C0042 | Measurement of cell viability and vitality |
Fetal bovine serum | Gibco | 10091 | Cell culture |
Geneticin™ Selective Antibiotic | Gibco | 11811098 | Selective antibiotic |
HAT Supplement (50X) | Gibco | 21060017 | Cell selection |
HT Supplement (100X) | Gibco | 11067030 | Cell selection |
Incomplete Freund’s adjuvant | Sigma-Aldrich | F5506 | Animal immunization |
isopropyl β-d-1-thiogalactopyranoside | Sigma-Aldrich | I5502 | Protein expression |
kanamycin | Beyotime Biotechnology | ST102 | Bactericidal antibiotic |
Leica TCS SP8 STED confocal microscope | Leica Microsystems | SP8 STED | Fluorescence imaging |
Lipofectamine® 2000 Reagent | Thermofisher | 11668019 | Transfection |
LSRFortessa™ fluorescence-activated cell sorting | BD | FACS LSRFortessa | Flow cytometry |
Microplate reader | BioTek | BOX 998 | ELISA analysis |
Micro spectrophotometer | Thermo Fisher | Nano Drop one | Nucleic acid concentration detection |
NaCl | Sinopharm Chemical Reagent | 10019308 | Culture broth |
(NH4)2SO4 | Sinopharm Chemical Reagent | 10002917 | Culture broth |
Opti-MEM | Gibco | 31985088 | Cell culture |
Polyethylene glycol 1500 | Roche Diagnostics | 10783641001 | Cell fusion |
PrimeScript™ 1st strand cDNA Synthesis Kit | Takara Bio | RR047 | qPCR |
protein A agarose | Beyotime Biotechnology | P2006 | Antibody protein purification |
Protino® Ni+-TED 2000 Packed Columns | MACHEREY-NAGEL | 745120.5 | Protein purification |
SBA Clonotyping System-HRP | Southern Biotech | May-00 | Isotyping of mouse monoclonal antibodies |
Seamless Cloning Kit | Beyotime Biotechnology | D7010S | Construction of plasmids |
Shake flasks | Beyotime Biotechnology | E3285 | Cell culture |
Sodium carbonate-sodium bicarbonate buffer | Beyotime Biotechnology | C0221A | Cell culture |
Trans-Blot SD Semi-Dry Transfer Cell | Bio-rad | 170-3940 | Western blot |
Tryptone | Oxoid | LP0042 | Culture broth |
Ultrasonic Homogenizer | Ningbo Xinzhi Biotechnology | JY92-IIN | Sample homogenization |
Yeast extract | Oxoid | LP0021 | Culture broth |
96-well microplate | Corning | 3599 | Cell culture |