Une plate-forme de microextraction-chromatographie en phase solide et de chromatographie en phase gazeuse est décrite ici pour une identification et une quantification rapides, fiables et semi-automatisées des volatiles dans les fruits mûrs du cassis. Cette technique peut être utilisée pour augmenter les connaissances sur l’arôme des fruits et pour sélectionner des cultivars à saveur améliorée à des fins de sélection.
On s’intéresse de plus en plus à la mesure des composés organiques volatils (COV) émis par les fruits mûrs dans le but de sélectionner des variétés ou des cultivars aux caractéristiques organoleptiques améliorées et, par conséquent, d’accroître l’acceptation des consommateurs. Des plateformes métabolomiques à haut débit ont récemment été développées pour quantifier un large éventail de métabolites dans différents tissus végétaux, y compris des composés clés responsables du goût des fruits et de la qualité des arômes (volatilomique). Une méthode utilisant la microextraction en phase solide de l’espace de tête (HS-SPME) couplée à la chromatographie en phase gazeuse-spectrométrie de masse (GC-MS) est décrite ici pour l’identification et la quantification des COV émis par les fruits mûrs de cassis, une baie très appréciée pour sa saveur et ses bienfaits pour la santé.
Les fruits mûrs des plantes de cassis (Ribes nigrum) ont été récoltés et directement congelés dans de l’azote liquide. Après homogénéisation tissulaire pour produire une poudre fine, les échantillons ont été décongelés et immédiatement mélangés avec une solution de chlorure de sodium. Après centrifugation, le surnageant a été transféré dans un flacon en verre contenant du chlorure de sodium. Les COV ont ensuite été extraits à l’aide d’une fibre de microextraction en phase solide (SPME) et d’un chromatographe en phase gazeuse couplé à un spectromètre de masse à piège à ions. La quantification volatile a été effectuée sur les chromatogrammes ioniques résultants en intégrant la zone de crête, en utilisant un ion m/z spécifique pour chaque COV. L’annotation correcte des COV a été confirmée en comparant les temps de rétention et les spectres de masse des étalons commerciaux purs exécutés dans les mêmes conditions que les échantillons. Plus de 60 COV ont été identifiés dans des fruits mûrs de cassis cultivés dans des endroits européens contrastés. Parmi les COV identifiés, des composés aromatiques clés, tels que les terpénoïdes et les volatiles C6, peuvent être utilisés comme biomarqueurs de la qualité des fruits de cassis. En outre, les avantages et les inconvénients de la méthode sont discutés, y compris les améliorations prospectives. En outre, l’utilisation de contrôles pour la correction des lots et la minimisation de l’intensité de la dérive a été soulignée.
La saveur est un trait de qualité essentiel pour tout fruit, ayant un impact sur l’acceptation des consommateurs et affectant ainsi considérablement la commercialisation. La perception de la saveur implique une combinaison des systèmes gustatif et olfactif et dépend chimiquement de la présence et de la concentration d’un large éventail de composés qui s’accumulent dans les parties comestibles de la plante ou, dans le cas des COV, sont émis par le fruit mûr1,2. Alors que la sélection traditionnelle s’est concentrée sur des caractéristiques agronomiques telles que le rendement et la résistance aux ravageurs, l’amélioration des caractéristiques de qualité des fruits, y compris la saveur, a longtemps été négligée en raison de la complexité génétique et de la difficulté de phénotyper correctement ces caractéristiques, ce qui a entraîné le mécontentement des consommateurs3,4. Les progrès récents des plateformes métabolomiques ont permis d’identifier et de quantifier les composés clés responsables du goût et de l’arôme des fruits5,6,7,8. De plus, la combinaison du profilage des métabolites avec des outils génomiques ou transcriptomiques permet d’élucider la génétique sous-jacente à la saveur des fruits, ce qui aidera les programmes de sélection à développer de nouvelles variétés aux caractéristiques organoleptiques améliorées2,4,9,10,11,12,13,14.
Les baies de cassis (Ribes nigrum) sont très appréciées pour leur saveur et leurs propriétés nutritionnelles, étant largement cultivées dans les zones tempérées d’Europe, d’Asie et de Nouvelle-Zélande15. La majeure partie de la production est transformée pour les produits alimentaires et les boissons, qui sont très populaires dans les pays nordiques, principalement en raison des propriétés organoleptiques des baies. La couleur et la saveur intenses du fruit sont le résultat d’une combinaison d’anthocyanes, de sucres, d’acides et de COV présents dans les fruits mûrs16,17,18. L’analyse des volatiles du cassis remonte aux années 196019,20,21. Plus récemment, plusieurs études se sont concentrées sur les COV de cassis, identifiant des composés importants pour la perception de l’arôme des fruits et évaluant l’impact du génotype, de l’environnement ou des conditions de stockage et de traitement sur la teneur en COV5,17,18,22,23.
En raison de ses nombreux avantages, la technique de choix pour le profilage volatil à haut débit est HS-SPME/GC-MS24,25. Une fibre de silice, recouverte d’une phase polymère, est montée sur un dispositif de seringue, permettant l’adsorption des volatiles dans la fibre jusqu’à ce qu’une phase d’équilibre soit atteinte. L’extraction de l’espace de tête protège la fibre des composés non volatils présents dans la matrice24. SpME peut isoler avec succès un grand nombre de COV présents à des concentrations très variables (parties par milliard à parties par million)25. De plus, il s’agit d’une technique sans solvant qui nécessite un traitement limité des échantillons. Les autres avantages de HS-SPME sont la facilité d’automatisation et son coût relativement faible.
Cependant, son succès peut être limité, en fonction de la nature chimique des COV, du protocole d’extraction (y compris le temps, la température et la concentration en sel), de la stabilité de l’échantillon et de la disponibilité de tissus fruitiers suffisants26,27. Cet article présente un protocole pour les COV de cassis isolés par HS-SPME et analysés par chromatographie en phase gazeuse couplés à un spectromètre de masse à piège à ions. Un équilibre entre la quantité de matière végétale, la stabilité de l’échantillon et la durée d’extraction et de chromatographie a été atteint pour pouvoir traiter un grand nombre d’échantillons de cassis, dont certains présentés dans cette étude. En particulier, les profils de COV et/ou les chromatogrammes de cinq cultivars (« Andega », « Ben Tron », « Ben Gairn », « Ben Tirran » et « Tihope ») seront présentés et discutés à titre d’exemples de données. En outre, le même protocole a été mis en pratique avec succès pour la mesure des COV chez d’autres espèces de baies de fruits telles que la fraise (Fragaria x ananassa), la framboise (Rubusidaeus) et la myrtille (Vaccinium spp.).
La sélection pour l’arôme des fruits a longtemps été entravée par la génétique et la biochimie complexes qui sous-tendent la synthèse de composés volatils et le manque de technologies pour un phénotypage approprié. Cependant, les progrès récents des plateformes métabolomiques, combinés à des outils génomiques, permettent enfin d’identifier les métabolites responsables des préférences des consommateurs et de produire des cultures avec une saveur améliorée3. Bien que la plu…
The authors have nothing to disclose.
Les auteurs remercient les Servicios Centrales de Apoyo a la Investigación de l’Université de Malaga pour les mesures HS-SPME/GC-MS. Nous remercions Sara Fernández-Palacios Campos pour son aide dans la quantification des volatiles. Nous remercions également les membres du consortium GoodBerry d’avoir fourni le matériel fruitier.
10 mL screw top headspace vials | Thermo Scientific | 10-HSV | |
18 mm screw cap Silicone/PTFE | Thermo Scientific | 18-MSC | |
5 mL Tube with HDPE screw cap | VWR | 216-0153 | |
Centrifuge | Thermo Scientific | 75002415 | |
Methanol for HPLC | Merck | 34860-1L-R | |
N-pentadecane (D32, 98%) | Cambridge Isotope Laboratories | DLM-1283-1 | |
Sodium chloride | Merck | S9888 | |
SPME fiber PDMS/DVB | Merck | 57345-U | |
Stainless grinding jars for TissueLyser | Qiagen | 69985 | |
TissueLyser II | Qiagen | 85300 | Can be subsituted by mortar and pestle or cryogenic mill |
Trace GC gas chromatograph-ITQ900 ion trap mass spectrometer | Thermo Scientific | ||
Triplus RSH autosampler with automated SPME device | Thermo Scientific | 1R77010-0450 | |
Water for HPLC | Merck | 270733-1L | |
Xcalibur 4.2 SP1 | Thermo Scientific | software |