O método Updegraff é o método mais utilizado para a estimativa de celulose. O principal objetivo desta demonstração é fornecer um protocolo updegraff detalhado para estimativa de conteúdo de celulose em amostras de biomassa vegetal.
A celulose é o polímero mais abundante na Terra gerado pela fotossíntese e o principal componente de suporte de carga das paredes celulares. A parede celular desempenha um papel significativo no crescimento e desenvolvimento das plantas, fornecendo força, rigidez, taxa e direção do crescimento celular, manutenção da forma celular e proteção contra estressores bióticos e abióticos. A parede celular é composta principalmente de celulose, lignina, hemicellulose e pectina. Recentemente, as paredes celulares das plantas foram alvo da produção de biocombustível e bioenergia de segunda geração. Especificamente, o componente de celulose da parede celular da planta é usado para a produção de etanol celulósico. A estimativa do teor de celulose de biomassa é fundamental para pesquisas fundamentais e aplicadas na parede celular. O método Updegraff é simples, robusto e o método mais utilizado para a estimativa do teor de celulose cristalina da biomassa vegetal. A fração de parede celular bruta insolúvel de álcool após o tratamento com reagente Updegraff elimina as frações de hemicellulose e lignina. Mais tarde, a fração de celulose resistente ao reagente Updegraff é submetida ao tratamento de ácido sulfúrico para hidrolisar o homopolímero de celulose em unidades de glicose monomérica. Uma linha de regressão é desenvolvida utilizando várias concentrações de glicose e usada para estimar a quantidade de glicose liberada sobre a hidrólise da celulose nas amostras experimentais. Finalmente, o teor de celulose é estimado com base na quantidade de monômeros de glicose por ensaio de antrona colorimétrico.
A celulose é o componente primário de suporte de carga das paredes celulares, que está presente tanto nas paredes celulares primárias quanto secundárias. A parede celular é uma matriz extracelular que envolve células vegetais e é composta principalmente de celulose, lignina, hemicellulose, pectina e proteínas matriciais. Aproximadamente um terço da biomassa das plantas é acelulose 1 e desempenha papéis significativos no crescimento e desenvolvimento das plantas, fornecendo força, rigidez, taxa e direção do crescimento celular, manutenção da forma celular e proteção contra estressores bióticos e abióticos. A fibra de algodão contém 95% de teor decelulose 2, enquanto as árvores contêm de 40% a 50% de celulose, dependendo das espécies vegetais e dos tipos de órgãos3. A celulose é composta por unidades repetitivas de celobiose, um disscarido de resíduos de glicose conectados por β-1,4 ligações glicossídicas4. O etanol celulósico é produzido a partir da glicose derivada da celulose presente nas paredescelulares daplanta 5 . A fibra celulósica é composta por várias micro fibrilas nas quais cada micro fibril atua como unidade central com 500-15000 monômeros de glicose1,6. O homopolímero de celulose é sintetizado por complexos de sinthase de celulose incorporados de membrana plasmática (CSC’s)1,7. Proteínas de celulose individual synthase A (CESA) sintetizam cadeias glucanas e as cadeias glucan adjacentes são conectadas por ligações de hidrogênio para formar celulose cristalina1,8. A celulose existe em várias formas cristalinas com duas formas predominantes, celulose Iα e celulose Iβ como formas nativas9. Em plantas mais altas, a celulose existe na forma de celulose Iβ, enquanto a celulose vegetal inferior existe na forma Iα10,11. No geral, a celulose desempenha um papel significativo na distribuição de força e rigidez para as paredes celulares da planta.
Os biocombustíveis de primeira geração são produzidos principalmente a partir de amido de milho, açúcares de cana e açúcares de beterraba, que são fontes de alimento, enquanto os biocombustíveis de segunda geração estão focando na produção de biocombustíveis a partir de material de parede celular de biomassa vegetal não-alimentar12. A estimativa precisa do conteúdo de celulose cristalina não é apenas importante para pesquisas fundamentais sobre biosíntese de celulose e dinâmica da parede celular, mas também para pesquisa aplicada de biocombustíveis e produtos biológicos. Vários métodos foram desenvolvidos e otimizados para estimativa de celulose na biomassa vegetal, e o método Updegraff é o método mais utilizado para a estimativa de celulose. O primeiro método relatado para estimativa de celulose foi por Cross e Bevan em 190813. O método baseou-se no princípio da cloração alternativa e extração por sulfato de sódio. No entanto, a celulose obtida pelos protocolos originais e modificados do método Cross e Bevan mostrou contaminação de pequenas frações de lignina, além de uma quantidade substancial de xilanas e mannans14. Apesar de várias modificações para remover lignina e hemicelluloses da fração de celulose, o método Cross-Bevan manteve uma quantidade considerável de mannans junto com celulose. Posteriormente, o método de Kurschner foi desenvolvido empregando ácido nítrico e etanol para extraircelulose 15. Este método afirmava que o total de lignina e 75% dos pentosanos foram removidos, mas os resultados verdadeiros da celulose foram os mesmos estimados pelo método de cloração de Cross e Bevan. Outro método (Norman e Jenkins) foi desenvolvido empregando metanol-benzeno, sulfato de sódio e hipoclorito de sódio para extraircelulose 16. Este método também reteve alguma fração de lignina (3%) e quantidades significativas de pentosanos levando a uma estimativa precisa da celulose. Mais tarde, Kiesel e Semiganowsky utilizaram uma abordagem diferente para hidrolisar a celulose usando ácido sulfúrico concentrado de 80%, e os açúcares reduzidos hidrolisados foram estimados pelo método de Bertrand17. Os dois métodos, Waksman e Stevens18 e Salo14,19 que foram desenvolvidos com base no método de Kiesel e Semiganowsky, também renderam 4-5% menos teor de celulose em comparação com os métodos anteriores20.
O método Updegraff é o método mais utilizado para a estimativa do teor de celulose cristalina. Este método foi descrito pela primeira vez pela Updegraff para a medição da celulose em 196921. O método Updegraff integra o método Kurschner (uso de ácido nítrico), métodos Kiesel e Seminowsky (hidrólise da celulose em monômeros de glicose usando ácido sulfúrico) com algumas modificações, e o ensaio anthrone de Viles e Silverman para simples estimativa colorimétrica de glicose e teor de celulose cristalina22. O princípio deste método é o uso de ácido acético e ácido nítrico (reagente updeenxf) para eliminar hemicellulose e lignina dos tecidos vegetais homogeneizados, o que deixa celulose resistente a ácido acético/nítrico para posterior processamento e estimativa15. A celulose resistente a ácido actic/nítrico é tratada com ácido sulfúrico de 67% para quebrar a celulose em monômeros de glicose e os monômeros de glicose liberados são estimados pelo ensaio de anthrone21,23. Várias modificações do método updegraff original foram utilizadas para simplificar o procedimento e a estimativa de celulose pelo ensaio de anthrone24. Em linhas gerais, este método pode ser dividido em cinco fases. Na primeira fase, o material da planta é preparado. Na segunda fase, a parede celular bruta é separada da biomassa total, já que a celulose é o componente-chave das paredes celulares das plantas. Mais tarde, na terceira fase, a celulose é separada dos componentes da parede celular não celulósica, tratando com reagente Updegraff. Na quarta fase, a celulose resistente a ácido acético/nítrico é dividida em monômeros de glicose por tratamento de ácido sulfúrico. O tratamento de ácido sulfúrico da celulose resulta na formação de compostos 5-hidroximetilfurfurfural a partir da reação de monômeros de glicose com ácido sulfúrico. Finalmente, na última fase, o anthrone gera um complexo azul esverdeado fervendo com o composto furfural gerado na fase anterior25. Este método colorimétrico baseado em anthrone foi usado pela primeira vez em 1942 por Dreywood. Anthrone é um corante que identifica compostos furfurais de pentose e hexose produtos desidratados como 5-hidroximetilfurfural, em condições ácidas. A reação com hexose produz uma cor intensa e melhor resposta em comparação com as pentoses25. A quantidade de glicose encadernada é medida pela absorvância espectrofotômetro a 620 nm e a intensidade do complexo azul esverdeado é diretamente proporcional à quantidade de açúcar na amostra. Os valores medidos de absorvência foram comparados com uma linha de regressão padrão de glicose para calcular a concentração de glicose da amostra. O teor de glicose medido foi utilizado para estimar o teor de celulose da biomassa vegetal.
As fibras de algodão são fibras naturais produzidas a partir da semente de algodão. A fibra de algodão é uma única célula com ~95% de teor de celulose2 com alto teor de celulose cristalina com aplicações extensas na indústria têxtil31. Como, a fibra de algodão contém ~95% de celulose, temos usado tecidos radiculares de algodão para demonstração da estimativa do teor de celulose cristalina. Os tecidos radiculares de algodão são moderadamente ricos em teor d…
The authors have nothing to disclose.
Agradecemos ao Departamento de Ciência de Plantas & Solos e Cotton Inc. pelo apoio parcial deste estudo.
Acetone | Fisher Chemical | A18-500 | Used in the protocol |
Anthrone | Sigma Aldrich | 90-44-8 | For colorimetric assay |
Centrifuge | Eppendorf | 5424 | For centrifugation |
Chloroform | Mallinckrodt | 67-66-3 | Used in the protocol |
Ethylenediaminetetraacetic acid (EDTA) | Sigma Aldrich | 6381-92-6 | Used in the protocol |
Ethanol | Millipore Sigma | EM-EX0276-4S | Used in the protocol |
Filter paper | Whatman | 1004-090 | Positive control |
Glacial acetic acid | Sigma | SKU A6283 | Used in the protocol |
Heat block/ ThermoMixer F1.5 | Eppendorf | 13527550 | For controlled temperatures |
Incubator | Fisherbrand | 150152633 | Used for drying plant sample |
Measuring Scale | Mettler Toledo | 30243386 | For specific quantities |
Methanol 100 % | Fisher Chemical | A412-500 | Used in the protocol |
Microplate (96 well) | Evergreen Scientific | 222-8030-01F | For anthrone assay |
Nitric acid | Sigma Aldrich | 695041 | Used in the protocol |
Polypropylene Microvials (2 mL) / screw capped tubes | BioSpec Products | 10831 | For high temperatures |
Spectrophotometer(Multimode Detector) | Beckmancoulter DTX880 | 1000814 | For measuring absorbances |
Spex SamplePrep 6870 Freezer / Mill | Spex Sample Prep | 68-701-15 | For grinding plant tissues into fine powder |
Sulphuric acid | J.T.Baker | 02-004-382 | Used in the protocol |
Sodium dodecyl sulfate (SDS) | Sigma Aldrich | 151-21-3 | Used in the PSB buffer |
Tubes (2 mL) | Fisher Scientific | 05-408-138 | Used in the protocol |
Tris Hydrochloride | Sigma Aldrich | 1185-53-1 | Used in the PSB buffer |
Ultrapure distilled water | Invitrogen | 10977 | Used in the protocol |
Vacuum dryer (vacufuge plus) | Eppendorf | 22820001 | For drying samples |
Vortex mixer | Fisherbrand | 14-955-151 | For mixing |
Waterbath | Thermoscientific | TSGP02PM05 | For temperature controlled conditions at specific steps |
Weighing Paper | Fisher Scientific | 09-898-12A | Used in the protocol |