Summary

Heterologous Expression and Functional Analysis of Aedes aegypti Odorant Receptors to Human Odors in Xenopus Oocytes

Published: June 08, 2021
doi:

Summary

A protocol is presented that functionally characterizes mosquito ORs in response to human odors using a Xenopus oocyte expression system coupled with a two-electrode voltage clamp, providing a powerful new technique for exploring the responses of mosquitoes ORs to exposure to human odors.

Abstract

The mosquito Aedes aegypti (Linnaeus), a vector of many important human diseases including yellow fever, dengue fever and Zika fever, shows a strong preference for human hosts over other warm-blooded animals for blood meals. Olfactory cues play a critical role for mosquitoes as they explore their environment and seek a human host to obtain blood meals, thus transmitting human diseases. Odorant receptors (ORs) expressed in the olfactory sensory neurons are known to be responsible for the interaction of mosquito vectors with human odors. To gain deeper insights into Ae. aegypti’s olfactory physiology and investigate their interactions with humans at the molecular level, we used an optimized protocol of Xenopus Oocytes heterologous expression to functionally analyze Ae. aegypti odorant receptors in response to human odors. Three example experiments are presented: 1) Cloning and synthesizing cRNAs of ORs and odorant receptor co-receptor (Orco) from four to six days old Ae. aegypti antennae; 2) Microinjection and expression of ORs and Orco in Xenopus oocytes; and 3) Whole-cell current recording from Xenopus oocytes expressing mosquito ORs/Orco with a two-electrode voltage-clamp. These optimized procedures provide a new way for researchers to investigate human odor reception in Aedes mosquitoes and reveal the underlying mechanisms governing their host-seeking activity at a molecular level.

Introduction

The yellow fever mosquito Ae. aegypti can transmit many deadly diseases including yellow fever, dengue fever and Zika fever, causing tremendous distress and loss of life. Mosquitoes make use of multiple cues such as CO2, skin odor, and body heat to locate their hosts1. Given that both humans and other warm-blooded animals produce CO2 and have similar body temperatures, it seems likely that female Ae. aegypti rely primarily on skin odor for host discrimination2. This creates a complex picture, however, with one early study isolating more than 300 compounds from human skin emanations3. Further behavioral assays have indicated that a number of these compounds evoke behavioral responses in Ae. aegypti4,5,6,7, but precisely how these compounds are detected by the mosquito remains largely unknown. Recent research by our group has identified several human odorants that may be involved in Ae. aegypti host-seeking activity, though their roles have yet to be confirmed by further behavioral assays8. How these essential human odorants are decoded in the peripheral sensory system of Ae. aegypti has yet to be established.

Insects detect odorants through the chemosensory sensilla on their olfactory appendages. Inside each of the sensilla, different olfactory receptors, including odorant receptors (ORs), ionotropic receptors (IRs) and gustatory receptors (GRs), are expressed on the membrane of olfactory sensory neurons9. These ORs are responsible for sensing many odorants encountered by insects, especially the odors associated with food, hosts and mating partners10,11,12,13. A previous study focusing on deorphanizing the function of ORs in Anopheles gambiae using the Xenopus expression system coupled with a two-electrode voltage clamp has found that Anopheles ORs are specifically tuned to the aromatics that are the major components in human emanations14. A recent genome study identified up to 117 OR genes in Ae. aegypti15. Consequently, a way to systematically address the functions of these Aedes ORs in response to biologically or ecologically important odorants such as human odors or oviposition stimuli would provide useful information for those seeking to further understand the chemical ecology or neuroethology of Ae. aegypti.

The two-electrode voltage clamp (TEVC) technique was originally developed to examine the function of membrane ion channels in the mid-1990s16,17. Since then, TEVC has been used to investigate ORs from a number of different insect species14,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34. This functional examination of ORs has substantially contributed to answering important ecological questions in insects, including: 1) How do insects locate food sources? 2) How are they attracted by the volatile sex pheromones released by their mating partners? 3) How do they find a perfect oviposition site for their offspring? and 4) Are there any compounds, plant-derived or synthetic, that can efficiently protect humans from biting bugs? Answers to these questions are crucial for controlling important disease vectors such as mosquitoes.

A number of other approaches, including those based on the human embryonic kidney cell line 293 (HEK293), the Drosophila empty neuron system, zinc-finger nuclease, transcription activator-like effector nuclease, and the CRISPR/Cas9 gene editing system, have also been used in OR functional studies12,20,35,36,37. However, these techniques all require the skills of an experienced molecular biologist and involve multiple potentially confounding factors. TEVC/oocyte expression is capable of directly measuring odor-evoked receptor currents and ion conductance and has the added advantage of the speedy quick setup time required to express receptors from cRNA. In this study, we therefore used TEVC to examine the responses of one Ae. aegypti OR55 (AaegOR55) against several odorants with potential biological relevance, revealing that oocytes expressed with AaegOR55•AaegOrco showed a dose-dependent response to the human odorant benzaldehyde.

Protocol

The protocol for this procedure, the Care and Use of Laboratory Animals, is approved and monitored (Auburn University’s Institutional Animal Care and Use Committee: approved protocol # 2016-2987). NOTE: Custom gene synthesis is a viable alternative to cloning for mosquito OR genes. 1. Mosquito and Olfactory Appendages (Antennae) Collection Maintain Ae. aegypti mosquitoes (obtained from Dr. James Becnel, USDA, ARS, Mosquito and Fly Research…

Representative Results

Using the single sensillum recording (SSR) technique, we recently pinpointed human odorants thought to be important for Ae. aegypti host-seeking behavior8. However, the molecular mechanism driving the process of sensing human odorants in the peripheral sensory system of Ae. aegypti remains unknown. ORs play an important role in odorant ligand detection in most insects10,11,12. To pe…

Discussion

TEVC is a classic technique that is widely used to examine the function of membrane receptors. Although a detailed protocol has already been published43 that shares considerable similarity with the procedure presented here, the proposed method here introduces some important modifications. For example, here, the cRNA of both OR and Orco are premixed and aliquoted into small volume samples immediately after synthesis and stored at -80 °C until use rather than mixing them separately on the …

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

This project was supported by an award from the Alabama Agricultural Experiment Station (AAES) Multistate/Hatch Grants ALA08-045, ALA015-1-10026, and ALA015-1-16009 to N.L.

Materials

24-well cell culture plate CytoOne CC7682-7524 Used for oocyte culture
African clawed frog Nasco LM00535 Used to harvest Xenopus oocytes
Ag/AgCl wire electrode Warner Instruments 64-1282 Used for microelectrodes
Clampex 10.3 Axon N.A. Used for signal recording
Clampfit 10.3 Axon Instruments Inc. N.A. Used for data analysis
Collagenase B Sigma 11088815001 Used for oocyte digestion
Digidata Digitizer Axon CNS Digidata 1440A Used for data acquisition
E.Z.N.A. Plasmid DNA Mini kit Omega D6942-01 Used for plasmid preparation
Ethyl-M-aminobenzoate methanesulfonate salt Sigma 886-86-2 Used for anesthetizing frogs
Glass capillary FHC 30-30-1 Used for microinjection
Glass capillary Warner Instruments 64-0801 Used for preparing microelectrodes
GyroMini Nutating Mixer Labnet S0500 Used for oocyte digestion
Insect Growth Chambers Caron Products model 6025 Used for oocyte incubation
Leica Microscope Leica S6 D Used for cutting mosquito antennae
Light Source Schott A20500 Providing light sources for observation
Magnetic stand Narishige GJ-1 Used to hold the reference electrode
Micromanipulator Leica 115378 Used for minor movement of electrode
Micropipe puller Sutter model P-97 Used to pull capillaries
Micropipette beveler Sutter model BV-10 Used to sharpen capillaries
mMESSAGE mMACHINE T7 kit Invitrogen AM1344 Used for synthesizing cRNA
Nanoject II Auto-Nanoliter Injector Drummond 3-000-204 Used for microinjection
Oligo d(T)20-primed SuperScript IV First-Strand Synthesis System Invitrogen 18091050 Used for synthesizing cDNA
Olympus Microscope Olympus SZ61 Used for microinjection
One Shot TOP10 Chemically Competent E. coli cells Invitrogen C404003 Used for transformation
Oocyte clamp amplifier Warner Instruments model OC-725C Used for TEVC recording
QIAquick gel extraction kit Qiagen 28704 Used for gel purification
TMC Vibration Isolation Table TMC 63-500 Used for isolating the vibration from the equipment
TURBO DNA-free kit Invitrogen AM1907 Used to remove DNase and other ions in RNA

Referencias

  1. Cardé, R. T. Multi-cue integration: how female mosquitoes locate a human host. Current Biology. 25 (18), 793-795 (2015).
  2. McBride, C. S., et al. Evolution of mosquito preference for humans linked to an odorant receptor. Nature. 515 (7526), 222-227 (2014).
  3. Bernier, U. R., Kline, D. L., Barnard, D. R., Schreck, C. E., Yost, R. A. Analysis of human skin emanations by gas chromatography/mass spectrometry. 2. Identification of volatile compounds that are candidate attractants for the yellow fever mosquito (Aedes aegypti). Analytical Chemistry. 72 (4), 747-756 (2000).
  4. Bernier, U. R., Kline, D. L., Schreck, C. E., Yost, R. A., Barnard, D. R. Chemical analysis of human skin emanations: comparison of volatiles from humans that differ in attraction of Aedes aegypti (Diptera: Culicidae). Journal of the American Mosquito Control Association. 18 (3), 186-195 (2002).
  5. Bernier, U. R., et al. Synergistic attraction of Aedes aegypti (L.) to binary blends of L-lactic acid and acetone, dichloromethane, or dimethyl disulfide. Journal of Medical Entomology. 40 (5), 653-656 (2003).
  6. Bernier, U. R., Kline, D. L., Allan, S. A., Barnard, D. R. Laboratory studies of Aedes aegypti attraction to ketones, sulfides, and primary chloroalkanes tested alone and in combination with L-lactic acid. Journal of the American Mosquito Control Association. 31 (1), 63-70 (2015).
  7. Okumu, F. O., et al. Development and field evaluation of a synthetic mosquito lure that is more attractive than humans. PloS one. 5 (1), 8951 (2010).
  8. Chen, Z., Liu, F., Liu, N. Human odour coding in the yellow fever mosquito, Aedes aegypti. Scientific Reports. 9 (1), 1-12 (2019).
  9. Hansson, B. S., Stensmyr, M. C. Evolution of insect olfaction. Neuron. 72 (5), 698-711 (2011).
  10. Nakagawa, T., Sakurai, T., Nishioka, T., Touhara, K. Insect sex-pheromone signals mediated by specific combinations of olfactory receptors. Science. 307 (5715), 1638-1642 (2005).
  11. Hallem, E. A., Carlson, J. R. Coding of odors by a receptor repertoire. Cell. 125 (1), 143-160 (2006).
  12. Carey, A. F., Wang, G., Su, C. Y., Zwiebel, L. J., Carlson, J. R. Odorant reception in the malaria mosquito Anopheles gambiae. Nature. 464 (7285), 66-71 (2010).
  13. Liu, F., Xiong, C., Liu, N. Chemoreception to aggregation pheromones in the common bed bug, Cimex lectularius. Insect Biochemistry and Molecular Biology. 82, 62-73 (2017).
  14. Wang, G., Carey, A. F., Carlson, J. R., Zwiebel, L. J. Molecular basis of odor coding in the malaria vector mosquito Anopheles gambiae. Proceedings of the National Academy of Sciences. 107 (9), 4418-4423 (2010).
  15. Matthews, B. J., et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature. 563 (7732), 501-507 (2018).
  16. Costa, A. C., Patrick, J. W., Dani, J. A. Improved technique for studying ion channels expressed in Xenopus oocytes, including fast superfusion. Biophysical Journal. 67 (1), 395-401 (1994).
  17. Schreibmayer, W., Lester, H. A., Dascal, N. Voltage clamping of Xenopus laevis oocytes utilizing agarose-cushion electrodes. Pflügers Archiv. 426 (5), 453-458 (1994).
  18. Lu, T., et al. Odor coding in the maxillary palp of the malaria vector mosquito Anopheles gambiae. Current Biology. 17 (18), 1533-1544 (2007).
  19. Ditzen, M., Pellegrino, M., Vosshall, L. B. Insect odorant receptors are molecular targets of the insect repellent DEET. Science. 319 (5871), 1838-1842 (2008).
  20. Sato, K., et al. Insect olfactory receptors are heteromeric ligand-gated ion channels. Nature. 452 (7190), 1002-1006 (2008).
  21. Xia, Y., et al. The molecular and cellular basis of olfactory-driven behavior in Anopheles gambiae larvae. Proceedings of the National Academy of Sciences. 105 (17), 6433-6438 (2008).
  22. Bohbot, J. D., Dickens, J. C. Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti. PLoS One. 4 (9), 7032 (2009).
  23. Bohbot, J. D., Dickens, J. C. Insect repellents: modulators of mosquito odorant receptor activity. PLoS One. 5 (8), 12138 (2010).
  24. Bohbot, J. D., Dickens, J. C. Odorant receptor modulation: ternary paradigm for mode of action of insect repellents. Neuropharmacology. 62 (5-6), 2086-2095 (2012).
  25. Hughes, D. T., Pelletier, J., Luetje, C. W., Leal, W. S. Odorant receptor from the southern house mosquito narrowly tuned to the oviposition attractant skatole. Journal of Chemical Ecology. 36 (8), 797-800 (2010).
  26. Pelletier, J., Hughes, D. T., Luetje, C. W., Leal, W. S. An odorant receptor from the southern house mosquito Culex pipiens quinquefasciatus sensitive to oviposition attractants. PloS one. 5 (4), 10090 (2010).
  27. Bohbot, J. D., et al. Multiple activities of insect repellents on odorant receptors in mosquitoes. Medical and Veterinary Entomology. 25 (4), 436-444 (2011).
  28. Bohbot, J. D., et al. Conservation of indole responsive odorant receptors in mosquitoes reveals an ancient olfactory trait. Chemical Senses. 36 (2), 149-160 (2011).
  29. Leal, W. S., Choo, Y. M., Xu, P., da Silva, C. S., Ueira-Vieira, C. Differential expression of olfactory genes in the southern house mosquito and insights into unique odorant receptor gene isoforms. Proceedings of the National Academy of Sciences. 110 (46), 18704-18709 (2013).
  30. Liu, F., Chen, Z., Liu, N. Molecular basis of olfactory chemoreception in the common bed bug, Cimex lectularius. Scientific Reports. 7, 45531 (2017).
  31. Choo, Y. M., et al. Reverse chemical ecology approach for the identification of an oviposition attractant for Culex quinquefasciatus. Proceedings of the National Academy of Sciences. 115 (4), 714-719 (2018).
  32. Ruel, D. M., Yakir, E., Bohbot, J. D. Supersensitive odorant receptor underscores pleiotropic roles of indoles in mosquito ecology. Frontiers in Cellular Neuroscience. 12, 533 (2019).
  33. Xu, P., Choo, Y. M., De La Rosa, A., Leal, W. S. Mosquito odorant receptor for DEET and methyl jasmonate. Proceedings of the National Academy of Sciences. 111 (46), 16592-16597 (2014).
  34. Xu, P., et al. Odorant inhibition in mosquito olfaction. iScience. 19, 25-38 (2019).
  35. Wicher, D., et al. Drosophila odorant receptors are both ligand-gated and cyclic-nucleotide-activated cation channels. Nature. 452 (7190), 1007-1011 (2008).
  36. DeGennaro, M., et al. orco mutant mosquitoes lose strong preference for humans and are not repelled by volatile DEET. Nature. 498 (7455), 487-491 (2013).
  37. Koutroumpa, F. A., et al. Heritable genome editing with CRISPR/Cas9 induces anosmia in a crop pest moth. Scientific Reports. 6, 29620 (2016).
  38. Schneider, P. N., Hulstrand, A. M., Houston, D. W. Fertilization of Xenopus oocytes using the Host Transfer Method. Journal of Visualized Experiments. (45), e1864 (2010).
  39. Missbach, C., et al. Evolution of insect olfactory receptors. ELife. 3, 02115 (2014).
  40. Jones, P. L., Pask, G. M., Rinker, D. C., Zwiebel, L. J. Functional agonism of insect odorant receptor ion channels. Proceedings of the National Academy of Sciences. 108 (21), 8821-8825 (2011).
  41. Butterwick, J. A., et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature. 560 (7719), 447-452 (2018).
  42. Missbach, C., et al. Evolution of insect olfactory receptors. ELife. 3, 02115 (2014).
  43. Nakagawa, T., Touhara, K. Functional assays for insect olfactory receptors in Xenopus oocytes. Pheromone signaling. , 107-119 (2013).
  44. Dobritsa, A. A., Van Naters, W., Warr, C. G., Steinbrecht, R. A., Carlson, J. R. Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron. 37 (5), 827-841 (2003).
This article has been published
Video Coming Soon
Keep me updated:

.

Citar este artículo
Wang, X., Chen, Z., Wang, Y., Liu, F., Jiang, S., Liu, N. Heterologous Expression and Functional Analysis of Aedes aegypti Odorant Receptors to Human Odors in Xenopus Oocytes. J. Vis. Exp. (172), e61813, doi:10.3791/61813 (2021).

View Video