يغطي هذا البروتوكول تحليلا مفصلا لتكوين الببتيدوغليكان باستخدام قياس الطيف الكتلي للكروماتوغرافيا السائلة إلى جانب استخراج الميزات المتقدمة وبرامج تحليل المعلوماتية الحيوية.
الببتيدوغليكان هو عنصر مهم في جدران الخلايا البكتيرية وهدف خلوي شائع لمضادات الميكروبات. على الرغم من أن جوانب بنية الببتيدوغليكان محفوظة إلى حد ما في جميع البكتيريا ، إلا أن هناك أيضا تباينا كبيرا بين إيجابيات / سلبيات الجرام وبين الأنواع. بالإضافة إلى ذلك ، هناك العديد من الاختلافات أو التعديلات أو التكيفات المعروفة على الببتيدوغليكان التي يمكن أن تحدث داخل الأنواع البكتيرية استجابة لمرحلة النمو و / أو المحفزات البيئية. تنتج هذه الاختلافات بنية ديناميكية للغاية معروفة بالمشاركة في العديد من الوظائف الخلوية ، بما في ذلك النمو / الانقسام ، ومقاومة المضادات الحيوية ، وتجنب دفاع المضيف. لفهم التباين داخل الببتيدوغليكان ، يجب تقسيم الهيكل العام إلى أجزائه المكونة (المعروفة باسم muropeptides) وتقييمها للتكوين الخلوي العام. يستخدم Peptidoglycomics قياس الطيف الكتلي المتقدم جنبا إلى جنب مع تحليل بيانات المعلوماتية الحيوية عالية الطاقة لفحص تكوين الببتيدوغليكان بتفاصيل دقيقة. يصف البروتوكول التالي تنقية الببتيدوغليكان من الثقافات البكتيرية ، والحصول على بيانات كثافة الموروببتيد من خلال كروماتوجراف سائل – مطياف الكتلة ، والتحليل التفاضلي لتكوين الببتيدوغليكان باستخدام المعلوماتية الحيوية.
الببتيدوغليكان (PG) هو سمة مميزة للبكتيريا تعمل على الحفاظ على مورفولوجيا الخلية ، مع توفير الدعم الهيكلي للبروتينات والمكونات الخلوية الأخرى 1,2. يتكون العمود الفقري ل PG من حمض N-acetyl muramic المرتبط ب β-1،4 (MurNAc) و N-acetyl glucosamine (GlcNAc) 1,2. يمتلك كل MurNAc ببتيدا قصيرا مرتبطا ببقايا ᴅ-lactyl يمكن ربطه بالببتيدات المجاورة المرتبطة بالسكاريد (الشكل 1أ ، ب). ينتج عن هذا التشابك بنية تشبه الشبكة تشمل الخلية بأكملها وغالبا ما يشار إليها باسم الكيس (الشكل 1C). أثناء تخليق PG ، يتم إنشاء السلائف في السيتوبلازم ، ويتم نقلها عبر الغشاء السيتوبلازمي بواسطة الزعانف. يتم دمج السلائف لاحقا في PG الناضج بواسطة إنزيمات transglycosylase و transpeptidase ، والتي تنتج روابط glycosidic والببتيد ، على التوالي3. ومع ذلك ، بمجرد تجميعها ، هناك العديد من الإنزيمات التي تنتجها البكتيريا التي تعدل و / أو تحلل PG لتنفيذ عدد من العمليات الخلوية ، بما في ذلك النمو والانقسام. بالإضافة إلى ذلك ، فقد ثبت أن التعديلات المختلفة ل PG تمنح تكيفات خاصة بالسلالة وظروف النمو والإجهاد البيئي ، والتي تورطت في إشارات الخلية ، ومقاومة مضادات الميكروبات ، والتهرب المناعي للمضيف4. على سبيل المثال ، التعديل الشائع هو إضافة مجموعة C6 acetyl على MurNAc التي تمنح المقاومة عن طريق الحد من الوصول إلى روابط الجليكان β-1,4 إلى إنزيمات الليزوزيم المنتجة من المضيف والتي تحلل PG4،5،6. في المكورات المعوية ، يمنح استبدال الطرف ᴅ-Ala من السلسلة الجانبية للببتيد ب ᴅ-Lac مقاومة أكبر لمضادات الميكروبات ، فانكومايسين 7,8.
ظل الإجراء العام لعزل وتنقية PG دون تغيير نسبيا منذ أن تم وصفه في ستينيات القرن العشرين9. يتم إذابة الأغشية البكتيرية من خلال المعالجة الحرارية باستخدام SDS ، تليها الإزالة الأنزيمية للبروتينات المرتبطة ، والجليكوليبيدات ، والحمض النووي المتبقي. يمكن بعد ذلك هضم الكيس السليم المنقى في المكونات الفردية عن طريق التحلل المائي للارتباط β-1،4 بين GlcNAc و MurNAc. ينتج هذا الهضم ثنائي السكاريد GlcNAc-MurNAc مع أي تعديلات هيكلية و / أو روابط متقاطعة سليمة وتسمى muropeptides (الشكل 1B).
تم إجراء التحليل التركيبي ل PG في البداية من خلال الفصل الكروماتوجرافي السائل عالي الضغط (HPLC) لتنقية كل موروببتيد متبوعا بالتحديد اليدوي للببتيدات الموروببتيدات10,11. ومنذ ذلك الحين تم استبدال هذا بقياس الطيف الكتلي الترادفي للكروماتوغرافيا السائلة (LC-MS) ، مما يزيد من حساسية الكشف ويقلل من عبء العمل اليدوي لتنقية كل ببتيد موروببتيد فردي. ومع ذلك ، ظلت الطبيعة المعقدة والمستهلكة للوقت للتحديد اليدوي للببتيدات muropeptides عاملا مقيدا ، مما قلل من عدد الدراسات التي أجريت. في السنوات الأخيرة مع ظهور التقنيات “omic” ، أصبح استخراج ميزة LC-MS الآلي أداة قوية ، مما يسمح بالكشف السريع وتحديد المركبات الفردية في عينات معقدة من مجموعات بيانات كبيرة جدا. بمجرد تحديد الميزات ، يقارن برنامج المعلوماتية الحيوية إحصائيا التباين بين العينات باستخدام التحليل التفاضلي لعزل حتى الحد الأدنى من الاختلافات بين مجموعة البيانات المعقدة وعرضها بيانيا للمستخدم. بدأ للتو استكشاف تطبيق برنامج استخراج الميزات لتحليل تكوين PG 12،13،14 ويقترن بتحليل المعلوماتية الحيوية 12. على عكس التحليل البروتيني الذي يستفيد من قواعد بيانات البروتين المتاحة بسهولة والتي تتنبأ بتجزئة الببتيد مما يسمح بتحديد الهوية الآلي بالكامل ، لا توجد مكتبة تجزئة حاليا ل peptidoglycomics. ومع ذلك ، يمكن أن يقترن استخراج المعالم بقواعد بيانات هيكلية معروفة ومتوقعة للتنبؤ بتحديد muropeptide12. نقدم هنا بروتوكولا مفصلا لاستخدام استخراج الميزات المستندة إلى LC-MS جنبا إلى جنب مع مكتبة muropeptide لتحديد الهوية الآلية والتحليل التفاضلي المعلوماتي الحيوي لتكوين PG (الشكل 2).
يصف هذا البروتوكول طريقة لتنقية الببتيدوغليكان من الثقافات البكتيرية ، وعملية للكشف عن LC-MS وتحليل التركيب باستخدام تقنيات المعلوماتية الحيوية. هنا ، نركز على البكتيريا سالبة الجرام وستكون هناك حاجة إلى بعض التعديلات الطفيفة لتمكين تحليل البكتيريا إيجابية الجرام.
ظل إعدا?…
The authors have nothing to disclose.
يود المؤلفون أن يشكروا الدكتورة جنيفر جيديس ماك أليستر والدكتور أنتوني كلارك على مساهماتهم في تحسين هذا البروتوكول. تم دعم هذا العمل من خلال المنح التشغيلية المقدمة من مركز القاهرة لحقوق الإنسان الممنوحة ل C.M.K (PJT 156111) و NSERC Alexander Graham Bell CGS D الممنوحة ل EMA تم إنشاء الأرقام في BioRender.com.
Equipment | |||
C18 reverse phase column – AdvanceBio Peptide column (100 mm x 2.1 mm 2.7 µm) | Agilent | LC-MS data acquisition | |
Heating mantle controller, Optichem | Fisher | 50-401-788 | for 4% SDS boil |
Heating Mantle, 1000mL Hemispherical | Fisher | CG1000008 | for 4% SDS boil |
Incubator, 37°C | for sacculi purification and MS sample prep | ||
Leibig condenser, 300MM 24/40, | Fisher | CG121805 | for 4% SDS boil |
Lyophilizer | Labconco | for lyophilization of sacculi | |
Magentic stirrer | Fisher | 90-691-18 | for 4% SDS boil |
mass spectrometer Q-Tof model UHD 6530 | Aglient | LC-MS data acquisition | |
microcentrifuge filters, Nanosep MF 0.2 µm | Fisher | 50-197-9573 | cleanup of sample before MS injection |
Retort stand | Fisher | 12-000-102 | for 4% SDS boil |
Retort clamp | Fisher | S02629 | for 4% SDS boil |
round bottom flask – 1 liter pyrex | Fisher | 07-250-084 | for 4% SDS boil |
Sonicator model 120 | Fisher | FB120 | for sacculi purification |
Sonicator – micro tip | Fisher | FB4422 | for sacculi purification |
Ultracentrifuge | Beckman | sacculi wash steps | |
Ultracentrifuge bottles, Ti45 | Fisher | NC9691797 | sacculi wash steps |
Water supply | City | for water cooled condenser | |
Software | |||
Chemdraw | Cambridgesoft | molecular editor for muropeptide fragmentation prediction | |
Excel | Microsoft | viewing lists of annotated muropeptides, abundance, isotopic patterns, etc. | |
MassHunter Acquisition | Aglient | running QTOF instrument | |
MassHunter Mass Profiler Professional | Aglient | bioinformatic differential analysis | |
MassHunter Personal Compound Database and Library Manager | Aglient | muropeptide m/z MS database | |
MassHunter Profinder | Aglient | recursive feature extraction | |
MassHunter Qualitative analysis | Aglient | viewing MS and MS/MS chromatograms | |
Prism | Graphpad | Graphing software | |
Perseus | Max Plank Institute of Biochemistry | 1D annotation | |
Material | |||
Acetonitrile | Fisher | A998-4 | |
Ammonium acetate | Fisher | A637 | |
Amylase | Sigma-Aldrich | A6380 | |
Boric acid | Fisher | BP168-1 | |
DNase | Fisher | EN0521 | |
Formic acid | Sigma-Aldrich | 27001-500ML-R | |
LC-MS tuning mix – HP0321 | Agilent | G1969-85000 | |
Magnesium chloride | Sigma-Aldrich | M8266 | |
Magnesium sulfate | Sigma-Aldrich | M7506 | |
Mutanolysin from Streptomyces globisporus ATCC 21553 | Sigma-Aldrich | M9901 | |
Nitrogen gas (>99% purity) | Praxair | NI 5.0UH-T | |
Phosphoric acid | Fisher | A242 | |
Pronase E from Streptomyces griseus | Sigma-Aldrich | P5147 | |
RNase | Fisher | EN0531 | |
Sodium azide | Fisher | S0489 | |
Sodium borohydride | Sigma-Aldrich | 452890 | |
Sodium dodecyl sulfate (SDS) | Fisher | BP166 | |
Sodium hydroxide | Fisher | S318 | |
Sodium Phosphate (dibasic) | Fisher | S373 | |
Sodium Phosphate (monobasic) | Fisher | S369 | |
Stains-all | Sigma-Aldrich | E9379 |