In vivo microendoscopic calcium imaging is an invaluable tool that enables real-time monitoring of neuronal activities in freely behaving animals. However, applying this technique to the amygdala has been difficult. This protocol aims to provide a useful guideline for successfully targeting amygdala cells with a miniaturized microscope in mice.
In vivo real-time monitoring of neuronal activities in freely moving animals is one of key approaches to link neuronal activity to behavior. For this purpose, an in vivo imaging technique that detects calcium transients in neurons using genetically encoded calcium indicators (GECIs), a miniaturized fluorescence microscope, and a gradient refractive index (GRIN) lens has been developed and successfully applied to many brain structures1,2,3,4,5,6. This imaging technique is particularly powerful because it enables chronic simultaneous imaging of genetically defined cell populations for a long-term period up to several weeks. Although useful, this imaging technique has not been easily applied to brain structures that locate deep within the brain such as amygdala, an essential brain structure for emotional processing and associative fear memory7. There are several factors that make it difficult to apply the imaging technique to the amygdala. For instance, motion artifacts usually occur more frequently during the imaging conducted in the deeper brain regions because a head-mount microscope implanted deep in the brain is relatively unstable. Another problem is that the lateral ventricle is positioned close to the implanted GRIN lens and its movement during respiration may cause highly irregular motion artifacts that cannot be easily corrected, which makes it difficult to form a stable imaging view. Furthermore, because cells in the amygdala are usually quiet at a resting or anesthetized state, it is hard to find and focus the target cells expressing GECI in the amygdala during baseplating procedure for later imaging. This protocol provides a helpful guideline for how to efficiently target cells expressing GECI in the amygdala with head-mount miniaturized microscope for successful in vivo calcium imaging in such a deeper brain region. It is noted that this protocol is based on a particular system (e.g., Inscopix) but not restricted to it.
Calcium is a ubiquitous second messenger, playing a crucial role in almost every cellular functions8. In neurons, action potential firing and synaptic input cause rapid change of intracellular free [Ca2+]9,10. Therefore, tracking calcium transients provides an opportunity to monitor neuronal activity. GECIs are powerful tools that allow for monitoring [Ca2+] in defined cell populations and intra-cellular compartments11,12. Among many different types of protein based calcium indicator, GCaMP, a Ca2+ probe based on a single GFP molecule13, is the most optimized and thus widely used GECI. Through multiple rounds of engineering, a number of variants of GCaMP has been developed12,14,15,16. We use one of the recently developed GCaMPs, GCaMP7b, in this protocol16. GCaMP sensors have greatly contributed to the study of neural circuit functions in a number of model organisms such as imaging of Ca2+ transients during development17, in vivo imaging in a specific cortical layer18, measurement of circuit dynamics in motor task learning19 and imaging of cell ensemble activity related with associative fear memory in the hippocampus and amygdala20,21.
Optical imaging of GECIs has several advantages22. Genetic encoding enables GECIs to be stably expressed for a long-term period of time in a specific subset of cells that are defined by genetic profile or specific patterns of anatomical connectivity. Optical imaging enables in vivo chronic simultaneous monitoring of hundreds to thousands of neurons in live animals. A few optical imaging systems have been developed for in vivo imaging and analysis of GECIs within the brain of freely behaving mice with head-mount miniaturized fluorescence microscopes21,23,24,25. Despite the in vivo optical imaging technique based on GECIs, GRIN lens, and a head-mount miniature microscope being a powerful tool to study the link between neural circuit activity and behavior, applying this technology to the amygdala has been difficult due to several technical issues related with targeting the GRIN lens to cells expressing GECIs in the amygdala without causing motion artifacts that severely reduce the quality of image acquisition and finding cells expressing GECIs. This protocol aims to provide a helpful guideline for surgical procedures of baseplate attachment and GRIN lens implantation that are critical steps for successful in vivo optical calcium imaging in the amygdala. Although this protocol targets the amygdala, most procedures described here are commonly applicable to other deeper brain regions. Although this protocol is based on a particular system (e.g., Inscopix), the same purpose may be easily achieved with other alternative systems.
All procedures were approved by the Animal Ethics Committee at the Korea Advanced Institute of Science and Technology. All experiments were performed in accordance with the guideline of the Institutional Animal Care and Use Committee.
NOTE: This protocol consists of six major steps: virus injection surgery, GRIN lens implant surgery, validation of GRIN lens implantation, baseplate attachment, optical recording of GCaMP signal during a behavior test, and data processing (Figure 1A). Except for surgery, the commercial software package (Inscopix) is used.
1. Stereotaxic surgery – AAV Virus injection
NOTE: The mouse strain used in this surgical procedure is C57BL6/J. The animal’s body is covered with a sterile drape during surgery and all steps in protocol are performed with wearing sterile gloves. Multiple surgeries are usually not performed in the same day. However, if multiple mice have to have the same surgery in the same day, use a separate set of autoclaved surgical tools for each mouse and 70% ethanol to disinfect the surgical instruments between mice. To keep mouse warm during the surgical procedure, the mouse is covered with a custom-made surgical blanket after fixed to the stereotaxic frame.
2. Stereotaxic surgery – GRIN lens implantation
NOTE: GRIN lens implant surgery is the most critical step in this protocol. Since a consistent slow speed of the GRIN lens movement is critical for successful GRIN lens implantation, a motorized surgery arm can be useful. The motorized surgery arm is a stereotaxic manipulator that is controlled by computer software. Although the motorized arm is used in this protocol, other ways can also be used as long as the lens moves consistently and slowly during implantation. Detailed information about the device is in the Table of Materials.
3. Validation of the GRIN lens implantation
NOTE: Validation of the GRIN lens implantation provides information on whether the implanted GRIN lens is on-target to GCaMP expressing cells. Based on this information, the experimenter saves their time from time-consuming processes such as the behavior test and data processing by excluding animals with off-targeted GRIN lens implantation. During the validation procedure, cells with GCaMP expression should be focused in the recording field of view. A mobile home cage is used in this step. A mobile home cage is a specialized round-shaped apparatus that allows head-fixed mice to freely move their legs during the validation of the GRIN lens implantation and baseplate attachment. An airlifting table in this apparatus on which the legs of head fixed mice are placed enables such free movement of legs although the head is fixed. The cells in the lateral nucleus of the amygdala is usually quiet in a resting or anesthetized state so GCaMP fluorescence signals are rarely detected in these conditions, which makes it very difficult, sometimes impossible, to find cells expressing GCaMP during the validation of the GRIN lens implantation and baseplate attachment. However, the movement of legs often produces GCaMP fluorescence signals in the cells of lateral nucleus of amygdala and thereby can help to locate the microscope. Thus, the mobile home cage is used in this protocol.
4. Baseplate attachment
NOTE: The baseplate attachment step follows the validation of GRIN lens implantation. The baseplate is a platform for mounting the microscope to the head of mice. As mentioned in the previous section, a mobile home cage is used in this protocol.
5. Optical recording of GCaMP signal during a behavior test
NOTE: The procedure of GCaMP signal recording during behavior can be very different depending on the systems used for optical imaging, experimental design and laboratory environment. Therefore, it is described in a simple way in this section.
6. Data processing
NOTE: Data processing procedure is very different depending on the data processing software and the GECIs used for the imaging experiment. Therefore, it is described in a simple way in this section. This protocol uses commercial data processing software (see Table of Materials). Alternatively, other open source software mentioned in the discussion section can also be used with no problem. The variables used in this protocol are listed in Table 1.
Validation of GRIN lens implantation
Before chronically attaching the baseplate to the brain by cementing, the GRIN lens implantation needs to be validated. In animals with successful lens implantation, both GCaMP expressing cells and blood vessels were clearly observed within a focal plane range determined by the distance between objective lens of microscope and implanted GRIN lens (Figure 2A and B). In contrast, in animals with off-target implantation, a clear image of GCaMP expressing cells was not observed within the focal plane range (either out-of-focus or out-of-view). In the case of out-of-focus, well-focused blood vessels could be observed but only blurry images for cells within the focal plane range (Figure 2C and D). In the case of out-of-view, blood vessels were not observed in most cases and no fluorescence signal was detected within the focal plane range (Figure 2E). Moreover, unlike other cases, the implanted GRIN lens showed a bright edge (Figure 2F). The baseplate attachment is conducted only on validated animals with on target GRIN lens implantation.
Recording of GCaMP signals in the LA neuron in response to auditory stimuli
In this protocol, 4 instances of pseudorandomized tone (2.8 kHz, 200 ms duration, 25 pulses) were presented to a mouse, and GCaMP signals were optically recorded in the LA cells of mice with head-mount microendoscope. Mice injected with AAV1-Syn-GCaMP7b-WPRE in the unilateral lateral amygdala were used for the imaging. In animals with successful GRIN lens implantation, virus expressing cells and blood vessels were clearly observed within the focal plane range (Figure 3A). In the behavior condition, approximately 50-150 cells usually displayed a significant fluorescence change in the field of view in the LA even without tone as shown in ΔF/F image, likely spontaneously active cells (Figure 3B). Upon tone presentation, only a few cells displayed a tone-specific change of GCaMP signal as determined by ΔF/F image analysis (6 cells in the Figure 3C and Figure 3D). The same procedures were conducted on mice injected with AAV2/1-CaMKIIα-GFP as a control. Although GFP expressing cells were detected within the focal plane range, no cells displayed a significant fluorescence change with or without tone as determined by ΔF/F image analysis (Figure 3E and Figure 3F).
For histological verification of GCaMP expression and targeting of GRIN lens, coronal sections of the postmortem brain are examined under the fluorescence microscope (Figure 4A and Figure 4B). DAPI staining is used to confirm intact cells and no sign of tissue damage due to inflammation of the brain tissue around the GRIN lens (Figure 4C).
Figure 1: Schematic workflow and diagrams for stereotaxic surgery for in vivo microendoscopic calcium imaging in the LA. (A) A schematic workflow of in vivo microendoscopic calcium imaging in the LA. (B) A microscopic picture showing two-dimensional coordinates of craniotomy sites for the virus injection and the GRIN lens implant surgery. Two skull screws and the lens form an equilateral triangle. (C) A diagram for the relative position between virus injection site and the implanted GRIN lens, and schematic explanation for calculating “Value A”. (D) Cross-section of the cement layer from the skull surface to the headplate in the final steps of surgery. Resin dental cement should cover the wall of the screws and the implanted GRIN lens. Acrylic cement is applied on the resin dental cement. Headplate is attached on the cement layer. Paraffin film covers the implanted GRIN lens surface and protect it from dust. Removable epoxy bond prevents detaching of paraffin film. Please click here to view a larger version of this figure.
Figure 2: Validation of the GRIN lens implantation and configuration of cement layers after baseplate attachment. (A) A representative endoscopic snapshot image from animals with successful GRIN lens implantation. Both GCaMP expressing cells and blood vessels are clearly observed. (B) Snapshot image of the implanted GRIN lens surface from animals with successful GRIN lens implantation. (C) A representative endoscopic snapshot image from animals with out-of-focus GRIN lens implantation. (D) Snapshot image of the implanted GRIN lens surface from animals with out-of-focus GRIN lens implantation. In the case of out-of-focus, blood vessels are sometimes clearly observed but only blurry images for cells within the focal plane range. (E) A representative endoscopic snapshot image from animals with out-of-view GRIN lens implantation. In the case of out-of-view, blood vessels are not observed in most cases and no fluorescence signal is detected within the focal plane range. (F) A snapshot image of the implanted GRIN lens surface from animals with out-of-view GRIN lens implantation. Unlike other cases, the bright edge is observed in this case. (G) The configuration of cement layers for baseplate attachment. Baseplate and headplate are attached by acrylic cement. There should a space unfilled with acrylic cement between the baseplate and GRIN lens. Please click here to view a larger version of this figure.
Figure 3: Recording of GCaMP signals in the LA neurons. (A to C) Data obtained from a mouse injected with AAV1-Syn-GCaMP7b-WPRE. (A) A representative endoscopic snapshot image during a behavior test. GCaMP7b expressing cells and blood vessels were clearly observed within the focal plane range. (B) A representative snapshot image showing ΔF/F signal. White line indicates cells that displayed a significant fluorescence change in the region of interest during the behavior test. Scale bar = 50 µm. (C) Maximum intensity projection image. Total 6 cells displayed a tone-specific change of GCaMP signal. Scale bar = 50 µm. (D) Representative ΔF/F traces of tone responsive cells. Each color corresponds to each individual cell with the same color in panel (C). (E and F) Data obtained from a mouse injected with AAV2/1-CaMKIIα-GFP. (E) A representative endoscopic snapshot image during a behavior test. GFP expressing cells were clearly detected within the focal plane range. (F) A representative snapshot image showing ΔF/F signal. Scale bar = 50µm. Please click here to view a larger version of this figure.
Figure 4: Histological verification of the GRIN lens position and GCaMP7b expression. (A) A representative coronal section image showing GCaMP7b expression in the LA. Scale bar = 200µm. (B) Magnified image. Scale bar = 50 µm. (C) Fluorescence microscopic image showing DAPI staining signal. Scale bar = 200 µm. Please click here to view a larger version of this figure.
Factor | value |
Spatial down sampling factor | 2 |
Temporal down sampling factor | 2 |
Spatial filter: High cut-off | 0.5 |
Spatial filter: Low cut-off | 0.005 |
Motion correction: High cut-off | 0.016 |
Motion correction: Low cut-off | 0.004 |
Motion correction: Maxtranslation | 20 |
ΔF/F reference frame | Mean frame |
PCA/ICA: blockSize | 1000 |
PCA/ICA: convergenceThreshold | 1×10^-5 |
PCA/ICA: icaTemporalWeight | 0.4 |
PCA/ICA: numICs | 120 |
PCA/ICA: numPCs | 150 |
PCA/ICA: unmixType | Temporal |
Event Detection: Decay Constant | 1.18 |
Event Detection: Threshold | 4 |
Table 1: List of variables for Data processing
Skillful surgery techniques are essential for achieving successful in vivo optical calcium imaging with head-mount miniature microscopy in deeper brain regions such as the amygdala as we described here. Therefore, although this protocol provides a guideline for optimized surgical processes of baseplate attachment and GRIN lens implantation, additional optimization processes might be necessary for critical steps. As mentioned in the protocol section, amygdala coordinates in surgery, airflow speed in baseplate attachment step, image acquisition settings (frame rate, LED power, etc.) in calcium recording and variables (ICA temporal weight, event smallest decay time, etc.) in data processing need to be optimized.
The baseplate attachment step can be modified. The head plate is necessary because it helps fix the head of awake mice during the baseplate attachment conducted in mobile home cage. However, if the mobile home cage is not prepared in the laboratory, the isoflurane gas anesthesia system is an alternative option. For this alternative way, the concentration of isoflurane gas may be critical. We observed that GCaMP signal is rarely detected in the amygdala of mice under 1.5% isoflurane. On the contrary, the GCaMP signal is detected under an 0.8% isoflurane condition and mice stay in an almost awake state but without substantial head movement in this condition. This anesthetization condition thus allows for conducting the baseplate attachment without using additional devices such as head plate and mobile home cage.
Unstable attachment of the skull screw, cement, baseplate, and microscope can cause motion artifacts that can be corrected by using motion correction software algorithm. The movement of the lateral ventricle is thought to cause an irregular type of motion artifacts that cannot be easily corrected with currently available motion correction software. Such irregular motion artifacts are minimal in most superficial brain regions such as the hippocampus and the cortex. However, it is frequently detected during optical imaging in the amygdala. To overcome this problem, this protocol suggests implanting the GRIN lens 50 µm away from viral injection site to the lateral side (Figure 1C), which greatly improves the image acquisition process by reducing the potential motion artifacts originated from the lateral ventricle. Although we set 50 µm relative to the viral injection site, the target coordinate for lens implantation may also be set relative to the lateral ventricle. In this protocol, we reasoned that it is more critical to precisely target the viral expressing site for successful performance of imaging. Thus, we used a viral injection coordinate as a reference to set the target coordinate of lens implantation. Through repeated trials, we established an optimal condition that allowed the GRIN lens for efficiently targeting viral expressing site while avoiding motion artifacts caused by lateral ventricle movement. Eventually, the method that can efficiently and accurately correct any motion artifacts would be of great help for accessing optical imaging to deeper brain regions in the future.
Although the in vivo optical calcium imaging with head-mount miniature microscope is a powerful tool and has been optimized, there is still room for improvement in many aspects. This protocol will facilitate studies that aim to investigate real-time neural activity in the amygdala of freely behaving animals.
The authors have nothing to disclose.
This work was supported by grants from Samsung Science and Technology Foundation (Project Number SSTF-BA1801-10).
26G needle | BD | 302002 | Surgery |
AAV1-Syn-GCaMP7b-WPRE | Addgene | 104493-AAV1 | Surgery |
AAV2/1-CaMKiiα-GFP | custom made | Surgery | |
Acrylic-Dental cement (Ortho-jet Acrylic Pink) | Lang | 1334-pink | Surgery & Baseplate Attachment |
Air flow manipulator | Neurotar | NTR000253-04 | Baseplate Attachment |
Amoxicillin | SIGMA | A8523-5G | Surgery |
Baseplate | INSCOPIX | 1050-002192 | Baseplate Attachment |
Baseplate cover | INSCOPIX | 1050-002193 | Baseplate Attachment |
Behavioral apparatus (chamber) | Coulbourn Instrument | Testcage | Behavior test |
Behavioral apparatus (software) | Coulbourn Instrument | Freeze Frame | Behavior test |
Carbon cage | Neurotar | 180mm x 70mm | Baseplate Attachment |
Carprofen | SIGMA | PHR1452-1G | Surgery |
Data processing software | INSCOPIX | INSCOPIX Data Processing Software | Baseplate Attachment & Behavior test |
Dexamethasone | SIGMA | D1756-500MG | Surgery |
Drill | Seyang | marathon-4 | Surgery |
Drill bur | ELA | US1/2, Shank104 | Surgery |
Glass needle | WPI | PG10165-4 | Surgery |
GRIN lens (INSCOPIX Proview Lens Probe) | INSCOPIX | 1050-002208 | Surgery |
Hamilton Syringe | Hamilton | 84875 | Surgery |
Head plate | Neurotar | Model 5 | Surgery |
Hex-key | INSCOPIX | 1050-004195 | Baseplate Attachment |
Laptop computer | Samsung | NT950XBV | Surgery & Baseplate Attachment |
Lens holder, Stereotaxic rod (INSCOPIX proview implant kit) | INSCOPIX | 1050-004223 | Surgery |
Microscope gripper | INSCOPIX | 1050-002199 | Baseplate Attachment |
Microscope, DAQ software, hardware | INSCOPIX | nVista 3.0 | Baseplate Attachment & Behavior test |
Mobile homecage | Neurotar | MHC V5 | Baseplate Attachment |
Moterized arm | Neurostar | Customized | Surgery |
Moterized arm software | Neurostar | Customized | Surgery |
NI board | National instrument | Behavior test | |
Removable epoxy bond | WPI | Kwik-Cast | Surgery |
Resin cement (Super-bond) | Sun medical | Super bond C&B | Surgery |
Skull screw | Stoelting | 51457 | Surgery |
Stereotaxic electrode holder | ASI | EH-600 | Surgery |
Stereotaxic frame | Stoelting | 51600 | Surgery |
Stereotaxic manipulator | Stoelting | 51600 | Baseplate Attachment |