यहां प्रस्तुत प्रोटोकॉल मस्तिष्क की चोट का एक कृंतक मॉडल बनाने की तकनीक दिखाता है। यहां वर्णित विधि लेजर विकिरण का उपयोग करती है और मोटर कॉर्टेक्स को लक्षित करती है।
प्रयोगात्मक कृंतक मॉडल में स्ट्रोक को उत्प्रेरण करने के लिए एक आम तकनीक में कैथेटर का उपयोग करके मध्य मस्तिष्क धमनी (एमसीए) के क्षणिक (अक्सर एमसीएओ-टी के रूप में चिह्नित) या स्थायी (एमसीएओ-पी के रूप में नामित) क्षणिक (अक्सर चिह्नित) शामिल है। हालांकि, इसकी आम तौर पर स्वीकार की गई तकनीक की कुछ सीमाएं हैं, जिससे इसका व्यापक उपयोग सीमित हो जाता है। इस विधि द्वारा स्ट्रोक प्रेरण को अक्सर स्थानीयकरण और इस्कीमिक क्षेत्र के आकार, रक्तस्राव की आवधिक घटनाओं और उच्च मृत्यु दर में उच्च परिवर्तनशीलता की विशेषता होती है। इसके अलावा, क्षणिक या स्थायी प्रक्रियाओं में से किसी के सफल समापन के लिए विशेषज्ञता की आवश्यकता होती है और अक्सर लगभग 30 मिनट तक रहता है। इस प्रोटोकॉल में, एक लेजर विकिरण तकनीक प्रस्तुत की जाती है जो कृंतक मॉडलों में मस्तिष्क की चोट को प्रेरित करने और अध्ययन करने के लिए एक वैकल्पिक विधि के रूप में काम कर सकती है।
जब नियंत्रण और एमसीएओ समूहों में चूहों की तुलना में, लेजर प्रेरण द्वारा मस्तिष्क की चोट शरीर के तापमान में परिवर्तनशीलता, infarct मात्रा, मस्तिष्क edema, इंट्राक्रैनियल नकसीर, और मृत्यु दर में कम परिवर्तनशीलता दिखाया । इसके अलावा, लेजर-प्रेरित चोट के उपयोग से एमसीएओ प्रयोगों के विपरीत मोटर कॉर्टेक्स में मस्तिष्क के ऊतकों को नुकसान हुआ जहां मोटर कॉर्टेक्स और स्ट्राटाल ऊतकों दोनों का विनाश देखा जाता है।
इस जांच से निष्कर्षों से पता चलता है कि लेजर विकिरण मोटर प्रांतस्था में मस्तिष्क की चोट को प्रेरित करने के लिए एक वैकल्पिक और प्रभावी तकनीक के रूप में काम कर सकता है । विधि प्रक्रिया को पूरा करने के लिए समय को भी छोटा करती है और विशेषज्ञ संचालकों की आवश्यकता नहीं होती है।
विश्व स्तर पर, स्ट्रोक मौत का दूसरा प्रमुख कारण है और विकलांगता का तीसरा प्रमुख कारण1। स्ट्रोक भी गंभीर विकलांगता की ओर जाता है, अक्सर चिकित्सा कर्मचारियों और रिश्तेदारों से अतिरिक्त देखभाल की आवश्यकता होती है । इसलिए, विकार से जुड़ी जटिलताओं को समझने और अधिक सकारात्मक परिणामों की क्षमता में सुधार करने की आवश्यकता है।
पशु मॉडल का उपयोग रोगों को समझने के लिए प्रारंभिक कदम है। सर्वोत्तम शोध परिणामों को सुनिश्चित करने के लिए, एक विशिष्ट मॉडल में एक सरल तकनीक, सामर्थ्य, उच्च प्रजनन क्षमता और न्यूनतम परिवर्तनशीलता शामिल होगी। इस्कीमिक स्ट्रोक मॉडल में निर्धारकों में मस्तिष्क एडेमा वॉल्यूम, इनफारेक्ट आकार, रक्त-मस्तिष्क बाधा (बीबीबी) टूटने की सीमा, और कार्यात्मक हानि आम तौर पर न्यूरोलॉजिकल गंभीरता स्कोर 2 के माध्यम से मूल्यांकन कियाजाताहै।
कृंतक मॉडल में सबसे व्यापक रूप से उपयोग की जाने वाली स्ट्रोक प्रेरण तकनीक मध्य मस्तिष्क धमनी (एमसीए) को क्षणिक या स्थायी रूप से 3 में लेजाताहै। यह तकनीक मनुष्यों में लोगों के समान स्ट्रोक मॉडल पैदा करती है: इसमें स्ट्रोक किए गए क्षेत्र के आसपास एक पेनुम्ब्रा होता है, अत्यधिक प्रजनन योग्य होता है, और इस्केमिया अवधि और रिफ्यूजन 4 कोनियंत्रितकरता है। फिर भी, एमसीएओ विधि में कुछ जटिलताएं हैं। इस तकनीक से इप्सिलाटेरल रेटिना में इंट्राक्रैनियल हेमरेज और चोट लगने का खतरा रहता है , जिसमें दृश्य प्रांतस्था और सामान्य हाइपरथर्मिया की शिथिलता होती है जिससे अक्सर अतिरिक्त परिणामहोतेहैं 5,6,7. अन्य सीमाओं में प्रेरित स्ट्रोक में उच्च भिन्नताएं (इस्केमिया के संभावित विस्तार से अनपेक्षित क्षेत्रों में उत्पन्न होती हैं, जैसे बाहरी कैरोटिड धमनी क्षेत्र), एमसीए का अपर्याप्त ऑक्सफ्यूजन, और समय से पहले रिफ़ेजन। इसके अलावा, विभिन्न उपभेदों और आकारों के चूहे विभिन्न इनफारेक्ट वॉल्यूम8प्रदर्शित करते हैं। सभी नुकसान का उल्लेख किया के अलावा, MCAO मॉडल गहरे मस्तिष्क क्षेत्रों में छोटे अलग स्ट्रोक प्रेरित नहीं कर सकते, क्योंकि यह कैथेटराइजेशन के लिए ंयूनतम पोत आकार की अपनी आवश्यकता के मामले में तकनीकी रूप से सीमित है । यह एक वैकल्पिक मॉडल की आवश्यकता को और अधिक महत्वपूर्ण बनाता है। एक अन्य विधि, फोटोथ्रोम्बोसिस, एमसीएओ प्रक्रियाओं के लिए एक संभावित विकल्प प्रदान करता है, लेकिन दक्षता9पर सुधार नहीं करता है। यह तकनीक प्रकाश के साथ स्ट्रोक को लक्षित करती है और पिछले मॉडलों पर कुछ सुधार प्रदान करती है। हालांकि, फोटोथ्रोम्बोसिस के लिए एक आक्रामक क्रैनियोटॉमी की आवश्यकता होती है जो माध्यमिक कॉम्पिकेशन9से जुड़ी होती है।
उल्लिखित कमियों के आलोक में, यहां प्रस्तुत प्रोटोकॉल कृंतक में मस्तिष्क की चोट को प्रेरित करने के लिए एक सक्षम वैकल्पिक लेजर तकनीक प्रदान करता है। लेजर तकनीक की कार्रवाई का तंत्र जीवित ऊतकों पर प्रदान किए गए लेजर के फोटोथर्मल प्रभावों पर आधारित है, जो शरीर के ऊतकों द्वारा प्रकाश बीम के अवशोषण और गर्मी में उनके रूपांतरण की ओर जाता है। लेजर तकनीक का उपयोग करने के फायदे इसकी सुरक्षा और हेरफेर में आसानी है। रक्तस्राव को रोकने के लिए गर्मी का उत्पादन करने की लेजर की क्षमता इसे दवा में बहुत महत्वपूर्ण बनाती है, जबकि किसी दिए गए बैठक बिंदु पर विभिन्न बीम को बढ़ाना करने की क्षमता यह सुनिश्चित करती है कि लेजर लक्ष्य बिंदु10के रास्ते में खड़े स्वस्थ ऊतकों को नष्ट करने से बचें। इस प्रोटोकॉल में इस्तेमाल लेजर बीम एक कम तरल माध्यम के माध्यम से पारित कर सकते हैं, जैसे हड्डी, अपनी ऊर्जा उत्सर्जित करने के बिना और/ एक बार जब यह मस्तिष्क के ऊतकों जैसे उच्च तरल माध्यम तक पहुंच जाता है, तो यह लक्षित ऊतकों को नष्ट करने के लिए अपनी ऊर्जा का उपयोग करता है। इसलिए यह तकनीक मस्तिष्क की चोट को केवल मस्तिष्क के उपयुक्त क्षेत्र में ही प्रेरित कर सकती है।
यहां प्रस्तुत तकनीक विकिरण के अपने स्तर को विनियमित करने की क्षमता का एक जबरदस्त राशि दिखाया, मस्तिष्क की चोट के चुने हुए विविधताओं का उत्पादन शुरू से ही इरादा । मूल एमसीएओ के विपरीत जो कॉर्टेक्स और स्ट्राटम दोनों को प्रभावित करता है, लेजर तकनीक मस्तिष्क की चोट के प्रभाव को विनियमित करने में सक्षम थी, केवल इच्छित मोटर कॉर्टेक्स पर चोट को प्रेरित करती थी। इसके साथ ही, लेजर-प्रेरित मस्तिष्क चोट प्रोटोकॉल और चूहों के सेरेब्रल कॉर्टेक्स पर की गई प्रक्रिया के लिए प्रतिनिधि परिणामों का सारांश प्रदान किया जाता है।
यह मानना उचित है कि लेजर तकनीक न्यूनतम आक्रामक है, यह देखते हुए कि लेजर समूह में कोई मौत या साह नहीं हुआ। मृत्यु और साह का प्राथमिक कारण रक्त वाहिकाओं को नुकसान होता है जो इंट्राक्रैनियल दबाव (आईसीपी) की …
The authors have nothing to disclose.
हम सोरोका विश्वविद्यालय चिकित्सा केंद्र के एनेस्थिसियोलॉजी विभाग और इस प्रयोग के प्रदर्शन में उनकी मदद के लिए नेगेव के बेन-गुरियन विश्वविद्यालय के प्रयोगशाला कर्मचारियों का शुक्रिया अदा करना चाहते हैं ।
2,3,5-Triphenyltetrazolium chloride | SIGMA – ALDRICH | 298-96-4 | |
50% trichloroacetic acid | SIGMA – ALDRICH | 76-03-9 | |
Brain & Tissue Matrices | SIGMA – ALDRICH | 15013 | |
Cannula Venflon 22 G | KD-FIX | 1.83604E+11 | |
Centrifuge Sigma 2-16P | SIGMA – ALDRICH | Sigma 2-16P | |
Compact Analytical Balances | SIGMA – ALDRICH | HR-AZ/HR-A | |
Digital Weighing Scale | SIGMA – ALDRICH | Rs 4,000 | |
Dissecting scissors | SIGMA – ALDRICH | Z265969 | |
Eppendorf pipette | SIGMA – ALDRICH | Z683884 | |
Eppendorf Tube | SIGMA – ALDRICH | EP0030119460 | |
Ethanol 96 % | ROMICAL | Flammable Liquid | |
Evans Blue 2% | SIGMA – ALDRICH | 314-13-6 | |
Fluorescence detector | Tecan, Männedorf Switzerland | model Infinite 200 PRO multimode reader | |
Heater with thermometer | Heatingpad-1 | Model: HEATINGPAD-1/2 | |
Infusion Cuff | ABN | IC-500 | |
Isofluran, USP 100% | Piramamal Critical Care, Inc | NDC 66794-017 | |
Multiset | TEVA MEDICAL | 998702 | |
Olympus BX 40 microscope | Olympus | ||
Optical scanner | Canon | Cano Scan 4200F | |
Petri dishes | SIGMA – ALDRICH | P5606 | |
Scalpel blades 11 | SIGMA – ALDRICH | S2771 | |
Sharplan 3000 Nd:YAG (neodymium-doped yttrium aluminum garnet) laser machine | Laser Industries Ltd | ||
Stereotaxic head holder | KOPF | 900LS | |
Sterile Syringe 2 ml | Braun | 4606027V | |
Syringe-needle 27 G | Braun | 305620 |