Ce protocole présente une procédure détaillée pour préparer des cryoéchantillons biologiques pour des expériences de spectroscopie d’absorption de rayons X basées sur le synchrotron. Nous décrivons toutes les étapes nécessaires pour optimiser la préparation des échantillons et la cryoconservation avec des exemples du protocole avec les cellules cancéreuses et phytoplanctoniques. Cette méthode fournit une norme universelle de cryo-préparation des échantillons.
L’étude des éléments avec spectroscopie d’absorption des rayons X (XAS) est particulièrement intéressante lors de l’étude du rôle des métaux dans les systèmes biologiques. La préparation des échantillons est une procédure clé et souvent complexe, en particulier pour les échantillons biologiques. Bien que les techniques de spéciation aux rayons X soient largement utilisées, aucun protocole détaillé n’a encore été diffusé pour les utilisateurs de la technique. En outre, la modification de l’état chimique est préoccupante et des techniques cryogéniques sont recommandées pour analyser les échantillons biologiques dans leur état hydraté quasi natif afin de préserver au maximum l’intégrité chimique des cellules ou des tissus. Nous proposons ici un protocole de préparation cellulaire basé sur des échantillons cryo-conservés. Il est démontré dans une étude par spectroscopie d’absorption des rayons X à haute résolution d’énergie détectée par fluorescence du sélénium dans les cellules cancéreuses et une étude du fer dans le phytoplancton. Ce protocole peut être utilisé avec d’autres échantillons biologiques et d’autres techniques de rayons X qui peuvent être endommagés par l’irradiation.
L’étude des biotransformations cellulaires d’éléments essentiels ou toxiques nécessite des techniques de spéciation à haute sensibilité et devrait minimiser les étapes de préparation des échantillons qui sont souvent sujettes à la modification des espèces chimiques.
Les éléments physiologiques tels que le sélénium et le fer sont connus pour être particulièrement difficiles à spécifier en raison de leur chimie complexe, de diverses stabilités des espèces de sélénium ou de fer et de leur faible concentration dans la gamme ppm (mg / kg) ou même inférieure au ppm. Ainsi, l’étude de la spéciation de ces éléments par XAS peut être extrêmement difficile. Le synchrotron XAS et en particulier le XAS à haute résolution de fluorescence d’énergie détecté (HERFD-XAS), qui permet un rapport signal/fondtrès faible 1, sont disponibles dans les sources synchrotron pour spécier des éléments hautement dilués dans des matrices biologiques complexes 2,3. Les mesures conventionnelles de fluorescence-XAS peuvent être effectuées à l’aide d’un détecteur à semi-conducteurs (SSD) à résolution d’énergie avec une largeur de bande d’énergie d’environ 150 à 250 eV, sur la ligne de faisceau CRG-FAME de l’European Synchrotron Radiation Facility (ESRF)4, tandis que les mesures HERFD-XAS nécessitent un spectromètre à analyseur de cristaux (CAS), avec une largeur de bande d’énergie d’environ 1 à 3 eV, sur la ligne de faisceau CRG-FAME-UHD à l’ESRF2 . Les photons de fluorescence sont discriminés par rapport à leur énergie avec des processus électroniques ou optiques respectivement.
La cryo-préparation de l’échantillon est essentielle pour préserver les structures et maintenir l’intégrité chimique de la composition, permettant ainsi une analyse proche de l’état biologique natif5. De plus, les analyses effectuées à des températures cryogéniques aussi basses que 10 K à l’aide d’un refroidissement cryogénique à l’hélium liquide (LN2) permettent aux dommages causés par le rayonnement de ralentir et de préserver la spéciation élémentaire pour XAS. Bien que certaines revues sur les techniques XAS appliquées aux échantillons biologiques signalent la nécessité de préparer et d’analyser des échantillons dans des conditions cryogéniques (par exemple, Sarret et al.6, Porcaro et al.7), aucune d’entre elles ne décrit clairement le protocole détaillé connexe. Dans cette publication, une méthode de cryo-préparation de cellules cancéreuses et de micro-organismes planctoniques est décrite pour la spéciation HERFD-XAS de Se8 et Fe9 à température cryogénique.
Les bonnes pratiques pour la préparation des échantillons et l’environnement lors des mesures spectroscopiques XAS de pointe nécessitent 1) une configuration; 2) une procédure d’analyse qui limite autant que possible les effets des dommages causés par les rayonnements; et 3) un échantillon (ou une référence de composé modèle) aussi homogène que possible en ce qui concerne la taille du faisceau de photons X. Le premier élément est pris en compte en effectuant l’acquisition à basse température, à l’aide d’un cryostat d’hélium liquide. Le deuxième élément est traité en effectuant chaque acquisition sur une zone fraîche de l’échantillon en la déplaçant par rapport au faisceau. Enfin, compte tenu de la troisième condition, les échantillons (granulés) et les références (poudres) sont conditionnés dans des granulés en vrac pressés afin de limiter autant que possible les porosités et les inhomogénéités et d’éviter la rugosité par rapport à la taille du faisceau sur la surface de l’échantillon sondé aux rayons X. Nous expliquons comment le protocole traite tous ces points.
Nous avons utilisé la lignée cellulaire de la prostate humaine PC-3 (potentiel métastatique élevé) et la lignée cellulaire ovarienne OVCAR-3 (qui représente jusqu’à 70% de tous les cas de cancer de l’ovaire) pour étudier les propriétés antiprolifératives des cellules cancéreuses des nanoparticules de sélénium (Se-NP), et phaeodactylum tricornutum diatomée comme espèce modèle pour étudier la séquestration du fer dans le phytoplancton.
Ce protocole a été utilisé pour étudier la forme chimique du sélénium et du fer dans des échantillons biologiques par spectroscopie d’absorption de rayons X. Il se concentre sur la cryo-préparation et le stockage d’échantillons biologiques et de composés de référence, ainsi que sur les mesures HERFD-XAS.
Cryo-préparation et stockage
La cryo-préparation des granulés d’échantillons biologiques en vrac permet de préserver l’intégrité chimique des esp…
The authors have nothing to disclose.
Nous sommes reconnaissants pour les contributions financières au développement de la ligne de faisceau par CEMHTI (Orléans, France, ANR-13-BS08-0012-01) et Labex OSUG@2020 (Grenoble, France, ANR-10-LABX-0056). Le projet FAME-UHD est soutenu financièrement par le Français « grand emprunt » EquipEx (EcoX, ANR-10-EQPX-27-01), le consortium CRG CEA-CNRS et l’institut INSU CNRS. Nous sommes reconnaissants de toutes les contributions au cours des expériences, en particulier de toutes les personnes travaillant sur BM30B et BM16. Les auteurs reconnaissent l’European Synchrotron Radiation Facility pour la fourniture de temps de faisceau de rayonnement synchrotron. Nous reconnaissons également le projet PHYTOMET ANR pour le soutien financier (ANR-16-CE01-0008) et le projet SEDMAC pour le soutien financier (INCA-Plan cancer-ASC16019CS).
Ammonium nitrate | Sigma-Aldrich | A3795 | NH4NO3, 2.66 mg/L of milliQ water |
Anaerobic chamber | Coy Laboratory, USA | equipped with Anaerobic Monitor (CAM-12) | |
Antibiotic stock | Sigma-Aldrich | A0166 for ampicillin, S9137 for streptomycin sulfate | 1 mL/L of milliQ water (ampicillin sodium and streptomycin sulfate, 100 mg/mL) |
Boron nitride powder | Sigma-Aldrich | 255475 | |
Cell counting chamber | Neubauer or Malassez | ||
Cell scraper | |||
Dulbecco's Phosphate Buffered Saline (DPBS) | GIBCO | 14190-094 | Without Calcium, Magnesium, Phenol Red |
Eppendorf tubes | 0.5 mL and 1.5 mL | ||
Falcon tubes | 15 mL and 50 mL | ||
Ferric citrate Fe/citrate = 1/20 | Sigma-Aldrich | F3388 | aqueous solution of FeCl3 50 mM and Na-citrate 1M pH 6.5 |
Fetal Bovine Serum | GIBCO | A31604-02 | Performance Plus, certified One Shot format, US origin |
Flasks | Sigma-Aldrich | Z707503 | TPP 150 cm2 area |
Growth chamber | Sanyo | Sanyo MLR-352 | at 20 °C and under a 12:12 light (3,000 lux) dark regime |
HEPES buffer | Sigma-Aldrich | H4034 | 1 g/L of milliQ water HEPES |
High grade serous, OVCAR-3 | ATCC, Rockville, MD | HTB-161 | Storage temperature: liquid nitrogen vapor temperature |
Incubator | Incubator at 37°C, humidified atmosphere with 5% CO2 | ||
Insulin solution from bovine pancreas | Sigma-Aldrich | I0516 | 10 mg/mL insulin in 25mM HEPES, pH 8.2, BioReagent, sterile-filtered, suitable for cell culture |
Manual hydraulic press | Specac, USA | ||
Marine diatom Phaeodactylum tricornutum | Roscoff culture collection | RCC69 | http://roscoff-culture-collection.org/rcc-strain-details/69 |
Morpholinepropanesulfonic acid | Sigma-Aldrich | M3183 | MOPS, 250 mg/L of milliQ water (pH 7.3) |
Optical microscope | |||
PC-3 | ECCAC, Salisbury, UK | 90112714 | Storage temperature: liquid nitrogen vapor temperature |
Penicillin-Streptomycin | Sigma-Aldrich | P4333 | Solution stabilized, with 10,000 units penicillin and 10 mg streptomycin/mL, sterile-filtered, BioReagent, suitable for cell culture |
Pipette-boy | 25mL-, 10mL-, and 5mL sterile plastic-pipettes | ||
Plankton culture products, Mf medium: Sea salts | Sigma-Aldrich | S9883 | 40g/L of milliQ water. Composition: Cl- 19.29 g, Na+ 10.78 g, SO42- 2.66 g, Mg2+ 1.32 g, K+ 420 mg, Ca2+ 400 mg, CO32- /HCO3- 200 mg, Sr2+ 8.8 mg, BO2- 5.6 mg, Br- 56 mg, I- 0.24 mg, Li+ 0.3 mg, F- 1 mg |
Plastic tweezers | Oxford Instrument | AGT 5230 | |
RPMI MEDIUM 1640 (ATCC Modification) | GIBCO | A10491-01 | Solution with 4.5 g/L D-glucose, 1.5 g/L Sodium Bicarbonate, 110 mg/L (1 mM) Sodium Pyruvate, 2.388 g/L (10 mM) HEPES buffer and 300 mg/L L-glutamine for research use |
Selenium nanoparticles (Se-NPs), BSA coated, 2 mg/mL | NANOCS Company, USA | Se50-BS-1 | BSA stabilized Se-NPs solution. Average size about 30 nm. Stored at 4°C in the dark, protected from the light. |
Selenium nanoparticles (Se-NPs), Chitosan coated, 2 mg/mL | NANOCS Company, USA | 11. Se50-CS-1 | Chitosan stabilized Se-NPs solution. Average size about 30 nm. Stored at 4°C in the dark, protected from the light. |
Sodium metasilicate pentahydrate | Sigma-Aldrich | 71746 | Na2SiO3.5H2O, 22.8 mg/L of milliQ water |
Sodium nitrate | Sigma-Aldrich | S5022 | NaNO3, 75 mg/L of milliQ water |
Sodium phosphate monobasic | Sigma-Aldrich | S5011 | NaH2PO4, 15 mg/L of milliQ water |
T-75 flasks | |||
Tissue culture hood | |||
Trace metal stock | Sigma-Aldrich | M5005, Z1001, M1651, C2911, 450243, 451193, 229857 | 1 mL/L of milliQ water (MnCl2.4H2O 200 mg/L, ZnSO4.7H2O 40 mg/L, Na2MoO4.2H2O 20mg/L, CoCl2.6H2O 14 mg/L, Na3VO4.nH2O 10 mg/L, NiCl2 10 mg/L, H2SeO3 10 mg/L) |
Trypan Blue Solution (0.4%) | GIBCO | 15250061 | |
Trypsin-EDTA (0.05%), phenol red | GIBCO | 25300-054 | |
Vitamin stock | Sigma-Aldrich | T1270 for thiamine, B4639 for biotin, V6629 for B12 | 1 mL/L of milliQ water (thiamine HCl 20 mg/L, biotin 1 mg/L, B12 1 mg/L) |
Water bath 37°C |