人間の血液脳関門は、親水性の分子や病原体の脳への侵入を選択的に防ぎます。髄膜炎や術後せん妄を含むいくつかの病理は、血液脳関門の透過性の増加に関連している。ここでは、微生物トラバーサルによるバリア透過性を試験する内皮細胞培養モデルについて説明する。
ヒトの血液脳関門(BBB)は、脳の代謝を保護し、調節するために生体分子の透過性が非常に低いことを特徴とする。BBBは、主にコラーゲンIVおよびフィブロネクチンが豊富な元下膜に埋め込まれた内皮細胞から形成される。BBBの機能不全に起因するいくつかの病理は、微生物の横断に続いて、髄膜炎などの疾患を引き起こす。異なる薬物や麻酔薬を含む複数のパラメータの効果をテストするために、BBBの透過性に関して、ヒト脳微小血管内皮細胞を用いてBBBを模倣した新規ヒト細胞培養モデルを確立した。内皮細胞は、合流するまでコラーゲンIVおよびフィブロネクチンコーティングされたフィルター単位で成長し、その後、関心のある異なる化合物で処理することができます。微生物トラバーサルを実証するために、内皮細胞の尖面を有する上部チャンバーに細菌を接種する。インキュベーション期間の後、下側チャンバのサンプルは寒天プレート上にメッキされ、得られたコロニーは数えられ、それによってコロニーの数はBBBの透過性と相関する。内因性細胞因子は、BBBに寄与する内皮細胞の基本的な細胞機構を解明するために、この実験的なセットアップで分析することができる。さらに、このプラットフォームは、内皮細胞の透過性に影響を与える可能性のある化合物の画面を実行することができます。最後に、細菌の横断を研究し、髄膜炎などの異なる病理にリンクすることができます。モデルを拡張し、BBBを通して細菌の経路を分析することが可能かもしれません。本稿では、BBBの透過性を調べる方法について詳しく説明したプロトコルを提供する。
ヒトBBBは、脳組織のユニークな境界であり、脳を血液から分離する。それは、より大きく親水性の分子の通過を厳密に調節し、細胞内拡散を遮断し、脳の恒常性を維持する。また、中枢神経系(CNS)免疫の一部として、プラズマの変動、毒素、微生物から脳を保護し、炎症性細胞を導きます。1世紀前の発見以来、BBBの構造と機能を理解するために多くの研究が行われてきた。細胞、タンパク質、脳と血液からのシグナルの複雑な相互作用は、さらにさらなる調査とモデルを必要とします。
ヒトBBBは、脳微小血管内皮細胞(BMEC)、ペリサイト、および星状細胞2、3の3種類の細胞で構成される。BMECは、体内の内皮細胞の大部分とは異なり、多くのタイトな接合部を有し、接合部4、低ピノサイト活性2、5、および連続基膜6、7を付着して、副細胞拡散を遮断する。小さな親油性分子は拡散し、その濃度勾配に従ってBBBを通過することができます。より大きく親水性の分子は、分極表現された選択的輸送システムを介してのみ脳に入るか、または去る8。この規則により、透過性9,10に逆相関する1,500-2,000 Ω·cm2の高い経内皮電気抵抗(TEER)が生じる。BMECは強固なバリアを構築しますが、ローカルおよび周辺信号11,12に反応することができます。BMEIcとアストロサイト13の間には密接な相互作用がある。アストロサイトの端足は容器のまわりに層を造り、堅い接合部13、14の形成を誘発する。それらは、成長因子-β(TGF-β)15,16の変形を含む異なる因子を有するBBB成熟に関与している。加えて、血管新生17の調節に重要な役割を果たす、細胞分化における内皮のアポトーシスを防止する18(図1)。それらは、基盤膜に埋め込まれ、容器壁19の構造安定性を提供する。
図1:血液脳関門の概略構造ヒトBBBのユニークな構造は、3つの異なる細胞タイプで構成されています。マイクロ血管の内腔は、狭い接合部で濃縮された内皮細胞に囲まれており、フェンストレートされていません。それらは、ペリサイトのように、下地膜に埋め込まれています。これらの細胞は、血管壁の構造安定性のために重要であり、アストロサイトの隣のBBBの開発に役割を果たしている。彼らの端足は容器のまわりの近い層を造り、堅い接合の建物を支える。BBBのすべての成分は生理機能のために重要です。この図の大きなバージョンを表示するには、ここをクリックしてください。
多くの異なる病理は、BBBの崩壊(例えば、敗血症性脳症)に関連している。罹患した患者は脳脊髄液20においてタンパク質レベルが上昇しており、罹患したげっ歯類における脳のパレンチマは、顕著なコロイド鉄酸化物およびアミノ酸21、22の取り込みの増加を示す。これらの結果は、BMECs21および内皮活性化23におけるピノサイトシスの増加と並んで起こるBBBの透過性の増加を指している。BBBの変化に関連するもう一つの関連病理は、髄膜炎、医学的緊急事態および神経細胞死につながる脳浮腫を伴う複雑な炎症である。循環細菌の一次入口部位は、ミクロ血管24であると考えられている。しかし、BBBは細菌の侵入を防ぎます。BBBの透過性は、実験性のヘマト性髄膜炎25の増加に必ずしも関連するとは限らず、そのメカニズムは多因子性であり得る。術後せん妄(POD)26と術前感染との関連を伴う敗血症の一致(27),28は、細菌への直接暴露が細菌病因へのより良い理解を得ることを可能にするBBBモデルの必要性を示す。
BBBを通して微生物横断を理解し、定量化する際には多くのギャップがあります。そこで、細菌トラバーサルとBBBの透過性に及ぼす影響との直接的な相関を持つ異なる因子と条件の簡便な試験を可能にするモデルを開発した。これまでの研究では、傍細胞透過性に焦点を当て、TEER測定とトレーサーフラックスが含まれていました。さらに、高分子輸送は、結合された分子または抗体によって分析され、それによって、内皮細胞のみを使用する異なるモデルまたはアストロサイトおよびペリサイトとの組み合わせが開発された。ヒト組織の取得が困難なため、多くの動物ベースのモデルが使用されています。牛およびブタ起源の脳内皮細胞は、高いTEERを有するタイトな単層を形成し、良好な形の尖門基底極性を形成し、BBBを介した低分子輸送の研究に適している。タンパク質はヒトの同族体29,30と配列が異なり、抗体の治療の調査が困難である。このため、マウスまたはヒト培養モデルが好ましい場合がある。サンプル源としてのマウスまたはラットは、よく特徴付けられる種から得られるという利点を有するが、研究目的ではほとんど細胞を生み出さない。これは、不死化マウス脳内皮腫(END)細胞株bEND.3、bEND.5またはcEND31、32、33の使用によって回避することができます。
ヒト組織から初等培養細胞を取得し、定期的に取り扱うのは困難である。したがって、ヒトBBBを調査する研究に使用されるほとんどのヒト細胞モデルは、不死化内皮細胞株である。公表された細胞株はヒト脳微小血管内皮細胞株hCMEC/D3で、薬物摂取の研究に適しており、取り扱いが容易である。細胞は単層を構築し、BBB34の特徴的な密結合タンパク質を発現するが、クローディン-5の発現レベルは無傷のマイクロ血管35よりも低いと報告されており、多くの特異的トランスポーターは、転写レベル36およびプロテオミクス研究34において検出されている。30~50 Ω·cm2の範囲で比較的低いTEERは、依然として課題37です。脳内皮細胞のもう一つの供給源は、ヒト多能性幹細胞(hPSC)38および循環内皮系および造血系統のヒト臍帯血由来幹細胞39、40である。分化の両方のプロトコルは、密細胞単層および高いTEER値(例えば、共培養における1,450 Ω·cm2)38をもたらす。これらの幹細胞モデルは、培養のために極度のケアを必要としますが、BBBの発達に対するホルモン41または遺伝的背景を有する疾患の影響を研究する機会を提供します。
本研究では、不死化したトランスフェクトヒト脳微小血管内皮細胞株THBMEC43を確立し、BBBを模倣し、細菌トラバーサルを研究した。細胞はフィルターに播種され、この細胞培養モデルでは100%の合流性に成長した。細菌は、細胞培養室の上部に接種される。大腸菌髄膜炎の発生率が高いため、サンプル研究では大腸菌(大腸菌)を使用しています。細胞単層の最も低い透過性は、播種45の13日目と15日目の間に生じることが示されている。従って、この時間以降にTHBMEC単層の処理が行われ、その後菌が単層の尖面上の培地に接種される。インキュベーション時間の後、バリアを越えることができた細菌は、寒天プレート上の細菌とメッキ媒体を介して定量され、コロニーを数えます。コロニーの数が増加すると、BBBを通過する細菌トラバーサルの増加と相関する。TEERは約70 Ω·cm246です。ただし、記載された方法でTEERを測定する必要はありません。BBBの透過性については定評のある値ですが、BBBを通る細菌の通過に影響を及ぼすことはないようです。未処理の細胞は、我々のモデルの圧迫感の制御として機能します。前の研究では、細胞が炎症性サイトカインに反応し、典型的なタイトな接合タンパク質47を発現することが示されている。これにより、より大きなトランスポーター基質および受容体の組み合いの化合物スクリーニングおよび検証が可能になります。
微生物トラバーサルの病因に関する限られた洞察は、PODまたは髄膜炎の治療法のさらなる発展を制限する。これらの疾患の死亡率と罹患率は、より良い患者治療を必要とし、根本的なメカニズムの研究を必要とし、化合物スクリーニングのための堅牢なプラットフォームを必要とする。多因子イベントは、ヒトBMECsで研究することができます。いくつかの正常な多くの種からのBMECsの分離手順が報告されたいくつかの、分子シグネチャ52、53の細胞の特性の損失を示している。この手順で説明したTHBMECは非常に初期の通路でトランスフェクトされ、そこで特定の脳内皮細胞特性を示し、それらを43に保存した。影響を受ける経路のすべてのステップがこれまでに発見されたわけではないため、これは重要であり、このモデルは従来のBMECsを模倣しているようです。我々の提示されたモデルは、BMECおよびBBBを介した微生物トラバーサルに直接影響を及ぼす。
THBMEC細胞の取り扱いは簡単であり、必要な技術装置はほとんどの生命科学研究所に存在する。当社のモデルは、THBMECがタイトな単層を構築した後、調査手順の即時開始を可能にします。トレーサー54によるTEER測定またはラベル付けのような新しい試験と従来のアッセイとの間の可能な組み合わせのために、用途の分野は広範囲に及ぶ可能性がある。また、共培養モデルまたは三重培養モデルを作るためにアストロサイトまたはペリサイトを添加することもできる。微生物トラバーサルに対する薬物の影響は、細菌を持つ上部チャンバーに接種する前に、THBMECsを化合物で処理することによって、我々のモデルでも試験することができる。実際には、手順の自動化を可能にする96ウェルプレート用のフィルタを使用してインサートを購入することが可能です。これにより、高スループットの薬物スクリーニングシステムの実施を促進し、上記疾患に対する薬物の発見を促進し、医薬品開発中のBBBに対する副作用を軽減することができる。
提示された方法における重要なステップは、細菌を上部チャンバに添加した後のインキュベーション時間である。大腸菌の生成時間はわずか20分55であるため、プロトコルのタイムラインとして時間を使用することが重要です。そうしないと、異なる時間ポイントを使用すると、誤解を招く結果を招く可能性があります。プレートが注意して処理されない場合、細菌暴露中に上部および下部のチャンバー間の汚染の可能性もあります。この時点で12ウェルプレートへの変更は、下側チャンバー内の媒体を汚染する可能性があります。
大腸菌は、細菌性髄膜炎の1つのよく知られた、非常に一般的な原因である。更なる調査は、髄膜炎髄膜炎56または肺炎球菌57のような髄膜炎に関連する異なる細菌をテストする必要があります。これらは、BBBを横断するために異なるメカニズムを使用しているようで、患者の治療のためによりよく理解する必要があります。高齢患者では、PODの発生率は26増加し、発生する併存疾患の数も増加する。異なる疾患、特に糖尿病のような全身的なものの間には相互作用があることがわかっています。我々のモデルでは、これらの条件をシミュレートしたり、細菌を追加する前に細胞を治療することが可能です。
このモデルは、THBMECと細菌の直接接触によって制限されており、関与する経路およびタンパク質を検出するための接触の潜在的なメカニズムを調査するためにさらなる研究が必要である。しかし、挿入物を除去し、さらなる分析のために細胞を収穫することは可能である。モデルのTEERは幹細胞モデル38、39、40と比較して低い。これを確認するには、6時間後に未処理細胞でBBBを横断しない菌濃度を用いた。
要約すると、この方法は、BBBを介した細菌の通過を分析する堅牢なプラットフォームを表し、ハイスループット薬物スクリーニングのためにそれを拡大する可能性を有する。
The authors have nothing to disclose.
著者らは、この方法に関する以前の研究、PD博士カースティン・ダンカー(ベルリンのシャリテ・ユニバーシテ・メディジン)のグループが、原稿を批判的に読むTHBMECとジュリアン・ウェーバーを提供してくれたことを認めている。この研究はRTK 2155(プロモエイジ)によって支持された。
Agar – Agar | Carl Roth | 6494.3 | BioScience-Grade |
Autoclave | Systec | VX-150 | |
Bacteria E.coli strain GM2163 | Fermentas Life Sciences, Lithuania | ||
Photometer | Eppendorf | 6131 | |
Cells THBMEC | Group of M. F. Stins | ||
Cell culture flasks | Greiner Bio-One | 658175 | |
Centrifuge Universal 320 | Hettrichlab | 1401 | |
Collagen IV | SIGMA Aldrich | C6745 | from human cell culture |
Countess Automated Cell Counter with cell counting chamber slides and Trypan Blue stain 0.4% | Invitrogen | C10311 | |
Culture tubes | Greiner Bio-One | 191180 | |
Cuvettes | BRAND | 759015 | |
Di sodium hydrogen phosphate di hydrate | MERCK | 1065800500 | |
DMEM/F-12 | GIBCO/ Thermo Sc. | 11330032 | HEPES |
Falcon tubes 15 ml | Greiner Bio-One | 188271 | |
Falcon tubes 50 ml | Greiner Bio-One | 227261 | |
Fetal Bovine Serum | GIBCO/ Thermo Sc. | 10270 | value FBS -Brazil |
Fibronectin | SIGMA Aldrich | F0556 | solution human fibroblasts |
Heracell 150 CO2 Incubator | Heraeus | 50116047 | |
Incubator shaker I 26 New Brunswick | Eppendorf | M1324-0000 | |
Inoculation loop | Dr. Ilona Schubert – Laborfachhandel | 641000 | |
LB Broth Base | GIBCO/ Thermo Sc. | 12780029 | |
L-Glutamine | GIBCO/ Thermo Sc. | 25030-081 | |
Microbial incubator B 6200 | Heraeus | 51015192 | |
Microbiological Safety Cabinet AURA 2000 M.A.C. Class II | BIOAIR | 12469 | |
Microscope inverse | Zeiss | TELAVAL 31 | |
Micro tubes 2 ml | Sarstedt | 72,695,400 | |
Micro tubes 1,5 ml | Sarstedt | 72,706,400 | |
Penicillin / Streptomycin | GIBCO/ Thermo Sc. | 15140122 | |
Petri dish | Dr. Ilona Schubert – Laborfachhandel | 464-800 | |
Potassium chloride | Roth | HN02.3 | |
Potassium-di-hydrogen phosphate | Roth | P018.2 | |
Sodium chloride | Roth | 9265.2 | |
ThinCerts + Multiwell Plates | Greiner Bio-One | 665631 | 12 well, pore size 3.0 µm |
Trypsin – EDTA | GIBCO/ Thermo Sc. | 15400054 | |
Vacuumpump Laboport | KNF | N 86 KT.18 |