Aquí, se describen dos modelos de cicatrización de heridas murinas, uno diseñado para evaluar las respuestas de cicatrización de heridas celulares y citoquinas y el otro para cuantificar la tasa de cierre de heridas. Estos métodos se pueden utilizar con modelos de enfermedades complejas como la diabetes para determinar los mecanismos de varios aspectos de la cicatrización deficiente de heridas.
La cicatrización de heridas es un proceso complejo que requiere la progresión ordenada de la inflamación, la formación de tejido de granulación, la fibrosis y la resolución. Los modelos murinos proporcionan una valiosa visión mecanicista de estos procesos; sin embargo, ningún modelo solo aborda completamente todos los aspectos de la respuesta de cicatrización de heridas. En su lugar, es ideal utilizar varios modelos para abordar los diferentes aspectos de la cicatrización de heridas. Aquí, se describen dos métodos diferentes que abordan diversos aspectos de la respuesta de cicatrización de heridas. En el primer modelo, las esponjas de alcohol polivinílico se implantan por vía subcutánea a lo largo del dorso del ratón. Después de la recuperación de la esponja, las células pueden ser aisladas por interrupción mecánica, y los fluidos se pueden extraer por centrifugación, lo que permite una caracterización detallada de las respuestas celulares y de citoquinas en el ambiente agudo de la herida. Una limitación de este modelo es la incapacidad de evaluar la tasa de cierre de la herida. Para ello, se utiliza un modelo de escisión de la piel de la cola. En este modelo, una pieza rectangular de 10 mm x 3 mm de piel de cola se extirpada a lo largo de la superficie dorsal, cerca de la base de la cola. Este modelo se puede fotografiar fácilmente para el análisis planimétrico para determinar las tasas de curación y se puede extirpar para el análisis histológico. Ambos métodos descritos se pueden utilizar en cepas de ratón genéticamente alteradas, o en combinación con modelos de condiciones comorbilidades, como diabetes, envejecimiento o infección secundaria, con el fin de dilucidar los mecanismos de cicatrización de heridas.
Hay muchos sistemas de modelos murinos disponibles para examinar los procesos de cicatrización de heridas, cada uno posee ventajas y limitaciones específicas1,,2. Los siguientes métodos presentan dos modelos de heridas murinas, cada uno de los cuales aborda un aspecto particular de la respuesta de cicatrización de heridas, y que se pueden utilizar para identificar la causa y el efecto de las perturbaciones en la respuesta a la lesión. El proceso de cicatrización de heridas ocurre en fases distintas. La primera fase es inflamatoria, caracterizada por la rápida afluencia de plaquetas, neutrófilos y monocitos/macrófagos, así como la producción de citoquinas proinflamatorias y quimioquinas. Tras la resolución de la inflamación, el medio ambiente pasa a un estado más reparador con la inducción de citoquinas y factores de crecimiento profisóxicos y proangiogénicos. El tejido de granulación se deposita y los neovasculares se forman con la migración de miofibroblastos, fibroblastos, células epiteliales y células endoteliales. En las etapas finales, se remodela la matriz extracelular provisional, y la formación de cicatrices y el cierre de la herida procede2,3,4,5,6,7,8.
Ningún modelo murino proporciona un sistema para estudiar todas las etapas de la cicatrización de heridas2. Aquí, se describen dos modelos quirúrgicos de heridas: uno aclara las respuestas agudas de cicatrización celular y citoquina, y el otro permite la evaluación del cierre de la herida, así como análisis histológicos. Estos dos métodos pueden emplearse de manera complementaria para evaluar los efectos de una perturbación o comorbilidad en diferentes aspectos de la respuesta de cicatrización de heridas. La implantación dorsal subcutánea de esponjas de alcohol polivinílico (PVA) es un sistema que se ha utilizado en modelos de roedores durante décadas para esclarecer numerosos aspectos de las respuestas celulares y granulados de tejidos9,,10,11,12,13,14,15,16,17,18,19,20 ,21,22,23,24. Este enfoque permite la recuperación de líquidos de heridas ricos en citoquinas e infiltrados celulares. En este modelo, 1 cm x 1 cm x 0,5 cm trozos de esponja PVA se colocan en bolsillos subcutáneos a través de una incisión de 2 cm realizada en la línea media dorsal posterior. La incisión se cierra con clips quirúrgicos, y las esponjas se pueden recuperar en puntos de tiempo posteriores para el aislamiento celular y fluido. El ambiente celular y citoquina de las esponjas aisladas refleja las etapas normales de la cicatrización aguda de heridas hasta unos 14 días después de la implantación. En los puntos de tiempo posteriores el modelo es más ventajoso para el estudio de la formación de tejido de granulación y la respuesta del cuerpo extraño1. Con este sistema, es posible aislar >106 células, lo que ofrece una clara ventaja para ensayos fenotípicos y funcionales y aislamiento de ARN, sobre células de aislamiento de otros métodos basados en biopsias1,22,23,25,26.
La tasa de cierre de la herida se determina utilizando el modelo de escisión de la piel de la cola. En este modelo, como se describe inicialmente por Falanga et al. e informado por otros27,28,29,30, una sección de espesor completo de 1 cm x 0,3 cm de la piel de la cola se elimina cerca de la base de la cola. El área de la herida se visualiza fácilmente y se puede medir con el tiempo. Alternativamente, el tejido de la cola se puede aislar para el análisis histológico. Este enfoque se puede utilizar como una alternativa o en conjunto con el método de biopsia de punzonado dorsal bien establecido. Las principales distinciones entre estos dos modelos son la tasa de cierre de2la herida, la presencia o ausencia de piel, y la estructura de la piel2,31,,32. Las heridas de la piel de la cola ofrecen un plazo más largo para evaluar el cierre de la herida, ya que se necesitan aproximadamente 21 días para que se produzca un cierre completo. Esto se opone a las biopsias de punzón dorsal sin esplinar, que sanan mucho más rápido (7-10 días), principalmente por contracción debido a la acción del panniculus carnosus. Las biopsias de punzón dorsal astillado sanan más lentamente y disminuyen los efectos de la curación contráctela, pero dependen de la presencia de un cuerpo extraño para restringir los mecanismos basados en contrámenes1,,2,27,30,31,33.
Los modelos de heridas descritos son informativos para entender los procesos normales de cicatrización de heridas en ausencia de perturbación. Mientras que la curación de la piel de los roedores difiere de maneras muy significativas de la piel humana, incluyendo la estructura suelta, la dependencia de la curación contráctea, y otras diferencias anatómicas, el sistema murino ofrece ciertas ventajas para los estudios mecanicistas y de cribado. El principal de ellos es la disponibilidad de cepas endogámicas y mutantes genéticos, la tractabilidad genética y un menor costo. La visión mecanicista obtenida de los estudios murinos se puede traducir a modelos animales complejos que imitan más de cerca la cicatrización de la piel humana, como el sistema porcino2,,31.
Además de examinar las respuestas de cicatrización de heridas en el estado estacionario, estos modelos se pueden combinar con condiciones comorbilidades para entender la base de los defectos de cicatrización de heridas a nivel celular, citoquina y tejido bruto. Es en este entorno particular que los dos modelos se pueden utilizar en concierto para evaluar los efectos de una condición comorbilidad particular, como la neumonía postoperatoria, tanto en la respuesta de cicatrización de heridas celulares agudas como en la tasa de cierre de la herida30.
Este artículo describe dos modelos de heridas murinas tractables que permiten la evaluación de la respuesta aguda de cicatrización de heridas. El primer método consiste en la implantación quirúrgica de esponjas de PVA en el espacio subcutáneo dorsal. Este enfoque ofrece una clara ventaja sobre los modelos de heridas basadas en biopsias para estudiar la respuesta de cicatrización de heridas celulares debido al gran número de células y la cantidad de líquidos de la herida obtenidos de las esponjas aisladas. Para…
The authors have nothing to disclose.
Los autores quieren agradecer a Kevin Carlson, de la Citometría de Flujo de la Universidad Brown y del Centro de Clasificación, la consulta y la asistencia con los experimentos de citometría de flujo. Las imágenes de las figuras 1B y C se crearon con BioRender. Kayla Lee y Gregory Serpa son agradecidos por su asistencia fotográfica. Este trabajo fue apoyado por subvenciones de los siguientes: Defense Advanced Research Projects Agency (DARPA) YFAA15 D15AP00100, Dean’s Areas of Emerging New Science Award (Brown University), National Heart Lung and Blood Institute (NHLBI) 1R01HL126887-01A1, Instituto Nacional de Ciencias Ambientales (NIES) T32-ES7272 (Formación en Patología Ambiental), y el Premio Semilla de Investigación de la Universidad Brown.
10x Phosphate Buffered Saline | Fisher Scientific | BP3991 | |
15 mL centrifuge tubes, Olympus | Genesee | 28-103 | |
1x HBSS (+Calcium, +Magnesium, –Phenol Red) | ThermoFisher Scientific | 14025076 | |
5ml Syringe | BD | 309646 | |
Anti-mouse CD45.2-APC Fire750 | BioLegend | 109852 | Clone 104 |
Anti-mouse F4/80-eFluor660 | ThermoFisher Scientific | 50-4801-82 | Clone BM8 |
Anti-mouse Ly6C-FITC | BD Biosciences | 553104 | Clone AL-21 |
Anti-mouse Ly6G-PerCP-eFluor710 | ThermoFisher Scientific | 46-9668-82 | Clone 1A8-Ly6g |
Anti-mouse Siglec-F-APC-R700 | BD Biosciences | 565183 | Clone E50-2440 |
Autoclip Stainless Steel Wound Clip Applier | Braintree Scientific | NC9021392 | |
Autoclip Stainless Steel Wound Clips, 9mm | Braintree Scientific | NC9334081 | |
Blender Bag, 80mL | Fisher Scientific | 14258201 | |
Culture Tube, 16mL, 17×100 | Genesee Scientific | 21-130 | |
Fetal Bovine Serum – Standard | ThermoFisher Scientific | 10437028 | |
Fixable Viability Dye eFluor506 | ThermoFisher Scientific | 65-0866-14 | |
Hepes Solution, 1M | Genesee Scientific | 25-534 | |
ImageJ Software | NIH | ||
Penicillin-Streptomycin (5000 U/mL) | ThermoFisher Scientific | 15070-063 | |
Polyvinyl alcohol sponge – large pore size | Ivalon/PVA Unlimited | www.sponge-pva.com | |
Povidone-iodine solution, 10% | Fisher Scientific | 3955-16 | |
Spray barrier film, Cavilon | 3M | 3346E | |
Stomacher 80 Biomaster, 110V | Seward | 0080/000/AJ |