Здесь мы представляем протокол для активной проверки участка металлоорганических катализаторов каркаса путем сравнения стойхиометрических и каталитических реакций карбонила-ene, чтобы выяснить, происходит ли реакция на внутренней или внешней поверхности металлоорганических рамок.
Дискриминация размера субстрата по размеру пор и однородности хиральной среды на местах реакции являются важными вопросами при проверке места реакции в металлоорганических рамках (MOF) на основе катализаторов в энантиоселективной каталитической реакции Системы. Поэтому для изучения этой проблемы необходим метод проверки места реакции катализаторов на основе MOF. Дискриминация размеров субстрата по размеру пор была достигнута путем сопоставления размера субстрата по сравнению с частотой реакции в двух различных типах реакций карбонил-эне с двумя видами МОФ. Катализаторы MOF были использованы для сравнения производительности двух типов реакций (опосредованные стойхиометрические и ти-катализованные реакции карбонила- эне) в двух различных носителях. Используя предложенный метод, было отмечено, что весь кристалл MOF участвовал в реакции, и интерьер хрустальной поры сыграл важную роль в оказании хирального контроля, когда реакция была стойихиометрической. Однородность хиральной среды катализаторов MOF была установлена методом контроля размера частицы, используемой в опосредоченной системе стойхиометрической реакции. Протокол, предложенный для каталитического реагирования, показал, что реакция в основном происходила на поверхности катализатора независимо от размера субстрата, что показывает фактические места реакции в неоднородных катализаторах на основе MOF. Этот метод проверки места реакции катализаторов MOF предлагает различные соображения для разработки разнородных энантиоселективных катализаторов MOF.
МАФ считаются полезным неоднородным катализатором химических реакций. Есть много различных сообщили использования MOFs для энантиоселективного катализа1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17 ,18,19. Тем не менее, еще предстоит определить, будут ли реакции иметь место на внутренней или внешней поверхности МОФ. Недавние исследования вызвали вопросы, касающиеся использования имеющейся поверхности и снижения диффузии20,21,22,23. Более поразительным вопросом является то, что хиральная среда варьируется в зависимости от расположения каждой полости в кристалле MOF. Эта неоднородность хиральной среды подразумевает, что стереовертитивность реакционного продукта зависит от места реакции24. Таким образом, разработка эффективного энантиоселективного катализатора требует определения места, где будет происходить реакция. Для этого необходимо обеспечить, чтобы реакция происходила либо на внутренней поверхности, либо только на внешней поверхности MOF, оставляя интерьер нетронутым. Пористая структура МОФ и их большая площадь поверхности, содержащая активные места хиральной среды, могут быть использованы для энантиоселективного катализа. По этой причине, MOFs являются отличными заменами твердой поддержке неоднородных катализаторов25. Использование МОФ в качестве неоднородных катализаторов необходимо пересмотреть, если реакция не происходит внутри них. Важное значение имеет расположение места реакции, а также размер полости. В пористых материалах размер полости определяет субстрат в зависимости от его размера. Есть некоторые сообщения о MOF основе катализаторов, которые упускают из виду размер полости вопрос25. Многие катализаторы на основе MOF вводят громоздкие каталитические виды (например, Ti (O-i Pr)4) в исходную структуру фреймворка3,8,13. Существует изменение размера полости, когда громоздкие каталитические виды принимаются в первоначальной структуре структуры. Уменьшение размера полости, вызванное громоздкими каталитическими видами, делает невозможным полное диффуцкое вещество в МАФ. Таким образом, в этих случаях необходимо рассмотреть вопрос о дискриминации размера субстрата по размеру полости МОФ. Каталитическая реакция МОФ часто затрудняет подтверждение реакции, происходящие в полости МОФ. Некоторые исследования показали, что субстраты больше, чем полоски MOF преобразуются в ожидаемые продукты с легкостью, которая кажется противоречивой8,13. Эти результаты можно интерпретировать как контакт между функциональной группой субстрата и каталитическим участком, исследующим каталитическую реакцию. В этом случае нет необходимости в том, чтобы субстрат распространялся на МОФ; реакция происходит на поверхности кристаллов MOF26 и размер полости непосредственно не участвует в дискриминации субстрата в зависимости от его размера.
Для выявления мест реакции MOFs, известный Льюис-кислота способствовали карбонил-эн реакции был выбран2. Использование 3-метилгерана и его сородичи в качестве субстратов, четыре типа энантиоселектильных реакций карбонил-эне(рисунок 1) были изучены27. Реакции, о которых сообщалось ранее, были разделены на два класса: стойхиометрическая реакция с использованием реагента и каталитических реакций с использованием ти реагента27. Реакция самого маленького субстрата требует стойхиометрического количества зн/КУМОФ-1 (KUMOF – Корейский университет Металло-органические рамки); было сообщено, что эта реакция происходит внутри кристалла27. Для этого метода были использованы два вида МОФ:«N/KUMOF-1» для стойхиометрической реакции и Ti/KUMOF-1 для каталитического реагирования. Благодаря различным механизмам реакции этих двух видов МОФ, сравнение скорости реакциии размера субстрата возможно2,28,29. Влияние размера частиц на реакцию карбонила-эне с помощью N/KUMOF-127 показало, что, как видно из предыдущего доклада, хиральная среда внешней поверхности отличается от внутренней стороны кристалла MOF24. В этой статье демонстрируется метод, который определяет места реакции, сравнивая реакции трех видов субстратов с двумя классами катализаторов и влияние размера частиц, как сообщалось в предыдущей работе27.
После синтеза (S) –KUMOF-1, кристаллы в некоторых флаконах кажутся порошкообразными и не подходят для использования при катализе. Таким образом, правильные кристаллы (S) –KUMOF-1 должны быть выбраны. Выход(S)-KUMOF-1 рассчитывается с использованием только те…
The authors have nothing to disclose.
Эта работа была поддержана Национальным исследовательским фондом Кореи (NRF) Программа фундаментальных научных исследований NRF-2019R1A2C4070584 и Научно-исследовательским центром NRF-2016R1A5A1009405, финансируемыми правительством Кореи (MSIP). С. Ким был поддержан NRF Global Ph.D. Стипендией (NRF-2018H1A2A1062013).
Acetone | Daejung | 1009-4110 | |
Analytical Balance | Sartorius | CP224S | |
Copper(II) nitrate trihydrate | Sigma Aldrich | 61194 | |
Dichloromethane | Daejung | 3030-4465 | |
Dimethyl zinc | Acros | 377241000 | |
Ethyl acetate | Daejung | 4016-4410 | |
Filter paper | Whatman | WF1-0900 | |
Methanol | Daejung | 5558-4410 | |
Microwave synthesizer | CEM | Discover SP | |
Microwave synthesizer 10 mL Vessel Accessory Kit | CEM | 909050 | |
N,N-Diethylformamide | TCI | D0506 | |
N,N-Dimethylaniline | TCI | D0665 | |
n-Hexane | Daejung | 4081-4410 | |
Normject All plastic syringe 5 mL luer tip 100/pk | Normject | A5 | |
Pasteur Pipette 150 mm | Hilgenberg | HG.3150101 | |
PTFE tape | KDY | TP-75 | |
Rotary Evaporator | Eyela | 243239 | |
Shaker | DAIHAN Scientific | DH.WSO04010 | |
Silica gel 60 (230-400 mesh) | Merck | 109385 | |
Synthetic Oven | Eyela | NDO-600ND | |
Titanium isopropoxide | Sigma Aldrich | 87560 | |
Vial (20 mL) | SamooKurex | SCV2660 | |
Vial (5 mL) | SamooKurex | SCV1545 |