Gramnegative Bakterien produzieren zwei räumlich getrennte Membranen. Die äußere Membran wird durch ein Periplasma und eine Peptidoglykanschicht von der inneren Membran abgetrennt. Die Fähigkeit, die beiden Doppelschichten dieser Mikroben zu isolieren, war entscheidend für das Verständnis ihrer Physiologie und Pathogenese.
Diese Methode arbeitet, indem die Hülle von Gram-negativen Bakterien in Total-, Innen- und Außenmembranfraktionen (OM) aufgeteilt wird, und schließt mit Assays, um die Reinheit der Bilayer zu bewerten. Das OM hat eine erhöhte Gesamtdichte im Vergleich zur inneren Membran, hauptsächlich aufgrund des Vorhandenseins von Lipooligosacchariden (LOS) und Lipopolysacchariden (LPS) innerhalb der äußeren Packungsbeilage. LOS- und LPS-Moleküle sind amphipathische Glykolipide, die eine ähnliche Struktur haben, die aus einem Lipid-A-Disaccharolipid und Einem Kern-Oligosaccharid-Substituenten besteht. Allerdings sind nur LPS-Moleküle mit einer dritten Untereinheit, die als O-Polysaccharid oder O-Antigen bekannt ist, verziert. Die Art und Menge der vorhandenen Glykolipide wirkt sich auf die OM-Dichte eines Organismus aus. Daher haben wir getestet, ob die Membranen von Bakterien mit unterschiedlichem Glykolipidgehalt mit unserer Technik ähnlich isoliert werden können. Für die LPS-produzierenden Organismen, Salmonella enterica serovar Typhimurium und Escherichia coli,waren die Membranen leicht zu isolieren und die LPS-O-Antigen-Moiety wirkte sich nicht auf die Bilayer-Partitionierung aus. Acinetobacter baumannii produziert LOS-Moleküle, die eine ähnliche Masse wie O-Antigen-mangelhafte LPS-Moleküle haben; Die Membranen dieser Mikroben konnten jedoch zunächst nicht getrennt werden. Wir argumentierten, dass das OM von A. baumannii weniger dicht war als das von Enterobacteriaceae, so dass der Saccharosegradient angepasst wurde und die Membranen isoliert wurden. Die Technik kann daher für den Einsatz mit anderen Organismen angepasst und modifiziert werden.
Gram-negative Bakterien produzieren zwei Membranen, die durch einen periplasmischen Raum und eine peptidoglykanische Zellwand1getrennt sind. Die innere Membran (IM) umschließt das Zytosol und ist eine symmetrische Bischicht von Phospholipiden. Peptidoglycan schützt vor Turgordruck und verleiht dem Bakterium eine Zellform und wird durch Lipoproteine2,3an der äußeren Membran (OM) befestigt. Das OM umgibt das Periplasma und ist überwiegend asymmetrisch. Die innere Packungsbeilage besteht aus Phospholipiden und die äußere Packungsbeilage besteht aus Glycolipiden, die als Lipooligosaccharide (LOS) oder Lipopolysaccharide (LPS)4,5bekannt sind. Die Lipidasymmetrie und die Biochemie der LOS/LPS-Moleküle in der äußeren Packungsbeilage verleihen der Zelloberfläche Barriereeigenschaften, die das Bakterium vor Gefahren in seiner Umgebung schützen6,7.
LPS-Moleküle bestehen aus drei Bestandteilen: dem Lipid A Disaccharolipid, dem Kernoligosaccharid und dem O-Polysaccharid oder O-Antigen. Lipid A ist ein multipliziertes acyatiertes Disaccharolipid. Kernoligosaccharide bestehen aus 10–15 Zuckern, die als grobes LPS oder R-LPS bekannt sind. Der Kern ist in den inneren Bereich unterteilt, der aus 2-Keto-3-Deoxy-D-Manno-Octulosesäure (kdo) und einem oder mehreren Heptoserückständen besteht, und einem äußeren Bereich, der im Allgemeinen aus Hexosen (Glucose oder Galaktose) und Häptosen oder Acetamidozuckern5besteht. Der äußere Kernbereich ist in seinen Komponenten und seiner Struktur variabler als der innere Kern. In Salmonella spp. wurde nur eine Kernstruktur beschrieben; In Escherichia coli gibt es jedoch fünf verschiedene Kernstrukturen (bezeichnet K-12, R1, R2, R3 und R4)8. E. coli K-12 DH5, die wir in diesem Verfahren verwenden, trägt eine Mutation, die in der Produktion R-LPS9führt. Den R-LPS-Molekülen fehlt die O-Antigen-Moiety und sie haben ein ähnliches Molekulargewicht wie LOS-Moleküle.
Die Zugabe von O-Antigen zu R-LPS verwandelt dieses Molekül in glattes LPS oder S-LPS. Die O-Antigene sind aus kurzen 3-4 Kohlenhydrat-Untereinheiten gebaut und bestehen aus mehreren Modalitäten mit unterschiedlichen Kettenlängen10. Einige LPS-produzierende Bakterien, wie Salmonella enterica serovar Typhimurium (S. Typhimurium), zeigen eine trimodale Verteilung von LPS-Molekülen auf ihrer Oberfläche10,11. Sehr lange Ketten-O-Antigene können über hundert Untereinheiten enthalten und mehr als hundert Kilodaltonen wiegen. Die O-Antigene verleihen dem Bakterium Oberflächeneigenschaften, die notwendig sind, um Antibiotika zu widerstehen, Raubüberfällen durch Bakteriophagen zu entgehen und Krankheiten zu verursachen.
Arten von Campylobacter, Bordetella, Acinetobacter, Haemophilus, Neisseria und andere erzeugen LOS Moleküle anstelle von LPS Moleküle auf ihrer Oberfläche12. LOS-Moleküle bestehen aus Lipid A und Kern-Oligosacchariden, aber das O-Antigen fehlt. Diese Arten von Gram-negativen Bakterien modifizieren ihre Kernoligosaccharide mit zusätzlichen Zuckern und Zuckerkombinationen, um die Oberflächeneigenschaften zu verändern12. Sowohl LOS- als auch LPS-produzierende Mikroben leiten die Phosphate auf Lipid A und Kernmoleküle mit kationischen Molekülen7ab. Zu diesen Zusätzen gehören Phosphoethanolamin, Galactosamin und Aminoarabinosesubstitutionen, die durch Neutralisierung der anionischen Oberflächenladung und damit zum Schutz vor kationischen antimikrobiellen Peptiden funktionieren. Gram-negative Bakterien verändern auch die Kern-Oligosaccharid-Struktur mit variablen nicht-stoichiometrischen Substitutionen von Zuckern oder zusätzlichen kdo-Molekülen und verändern die Anzahl der Acylketten auf Lipid-A-Disaccharolipiden7.
Die Fähigkeit, das IM aus dem OM von Gram-negativen Bakterien zu isolieren, war entscheidend für das Verständnis der Rolle der Zellhülle bei der antimikrobiellen Resistenz und Krankheitspathogenese11,12. Ableitungen dieses Ansatzes wurden verwendet, um Mechanismen der Montage, Wartung und Umgestaltung des Proteins, Phospholipid, und Glykolipid Bestandteile für die OM abzuleiten.
Unser Labor führt routinemäßig bakterielle lipidomische Analysen durch, um die proteinvermittelte Lipidregulation und Lipidfunktion bei einer Vielzahl von Gram-negativen Arten zu untersuchen. Die im Protokoll verwendeten Volumina spiegeln die routinemäßige Anwendung dieses Verfahrens zur Analyse nicht radioaktiv markierter Phospholipide durch Dünnschichtchromatographie und Flüssigchromatographie Tandemmassenspektrometrie13,14wider.
Das Protokoll beginnt damit, eine gekühlte Suspension von Gram-negativen Bakterien einer hochosmolaren Lösung von Saccharose auszusetzen und Lysozym hinzuzufügen, um das OM von der zugrunde liegenden Peptidoglykanschicht zu trennen (Abbildung 1)12. EDTA wird dann hinzugefügt, um das Eindringen des Lysozym zu erleichtern, da die divalente Kationsequestrierung die lateralen elektrostatischen Überbrückungswechselwirkungen zwischen benachbarten LOS/LPS-Molekülen15stört. Das ursprüngliche Protokoll, von dem unser Protokoll angepasst wurde, erforderte die Bildung von Spheroplasten, einer gramnegativen Bakterienzellform, die aus einer Plasmamembran und Zytosol besteht, aber die Peptidyllykanschicht und ein OM fehlt. Es ist möglich, dass Spheroplaste nach dem angepassten Verfahren hergestellt werden; jedoch, die Technik nicht verlassen oder beabsichtigen auf ihre Bildung für den Erfolg. Stattdessen werden die lysozym-EDTA-behandelten Bakterien schnell durch Zentrifugation geerntet und in einer Saccharoselösung mit geringerer Konzentration vor der Drucklyse wieder suspendiert. Die OMs, die durch die Bildung von Spheroplasten freigesetzt worden sein könnten, sollten theoretisch aus den Überstand der behandelten Zellen geerntet werden können, aber dieser Ansatz ist hierin nicht detailliert. Letztlich werden die behandelten Zellen einer konventionellen Homogenisierung und Lyse unterzogen, was die Effizienz und Reproduzierbarkeit des Membrantrennverfahrens verbessert16.
Nach der Lyse werden die Gesamtmembranen durch Ultrazentrifugation gesammelt und auf einen diskontinuierlichen Saccharosedichtegradienten aufgetragen, um die IMs und OMs zu fraktionieren. Der klassische Ansatz verwendet einen kontinuierlicheren Gradienten, der aus mindestens fünf verschiedenen Saccharoselösungenbesteht 11,12. Der diskontinuierliche Gradient in unserem Protokoll besteht aus drei Saccharoselösungen und teilt die Doppelschichten in zwei unterschiedliche Brüche17. Die LOS- und LPS-Moleküle innerhalb der OMs von Gram-negativen Bakterien treiben die Hülle in eine obere braune IM-Fraktion mit niedriger Dichte und eine niedrigere weiße OM-Fraktion mit hoher Dichte(Abbildung 1 und Abbildung 2).
Acinetobacter baumannii sind wichtige multiresistente menschliche Krankheitserreger, die LOS-Moleküle in ihrem OM produzieren und eine Zellhülle aufrichten, die schwer zu trennen ist18,19. Jüngste Arbeiten deuten darauf hin, dass eine Ableitung des Protokolls, das wir hier präsentieren, verwendet werden kann, um die Doppelschichten dieser Organismen zu partitionieren20. Deshalb haben wir unser Protokoll auf A. baumannii 17978 getestet. Anfangs war das Verfahren unzureichend. Allerdings haben wir die Saccharosekonzentration der Lösung mit mittlerer Dichte modifiziert und die Trennung stark verbessert (Abbildung 2). Ein NADH-Dehydrogenase-Assay und ein LOS/LPS-Extraktions- und Detektionsverfahren wurden verwendet, um die Trennung für A. baumannii, Wildtyp S, zu bestätigen. Typhimurium und zwei O-Antigen-defizide enterobakterielle Genotypen; nämlich galE-mutant S. Typhimurium und ein Laborstamm, E. coli DH5 (Abbildung 3 und Abbildung 4).
Die Absicht dieser Arbeit ist es, einen schlanken Ansatz für die reproduzierende Isolierung der Membranen von Gram-negativen Bakterien zu liefern. Das Protokoll kann verwendet werden, um viele Arten von membranassoziierten Molekülen für diese Mikroben zu untersuchen.
Diese Methode wird den Forschern weiterhin dabei helfen, die Rolle der Zellhülle in der bakteriellen Physiologie und Pathogenese zu verstehen. Nach den sequenziellen Ultrazentrifugationsschritten kann eine gereinigte Gesamt-, Innen- und OM-Fraktion erhalten werden. Diese Membranen können isoliert untersucht werden, um Hypothesen im Zusammenhang mit der Lokalisierung und Funktion des Membranproteins, dem Transport und dem Handel über das Periplasma und die Zusammensetzung der einzelnen Doppelschichten unter verschieden…
The authors have nothing to disclose.
Diese Arbeit wurde von P20GM10344 und R01AI139248 an Z. D. Dalebroux vergeben.
1 L Centrifuge bottles, PC/PPCO, super speed, with sealing cap, Nalgene | VWR | 525-0466 | |
1 L Pyrex Media Storage Bottle with High Temperature Cap | VWR | 10416-312 | |
2000 mL Erlenmeyer Flask, Narrow Mouth | VWR | 10545-844 | |
4-20% mini PROTEAN Precast Protein Gels, 12 well | BIORAD | 4561095 | |
4x Laemmli Sample Buffer 10 mL | BIORAD | 1610747 | |
50 mL sterile polypropylene centrifuge tubes | VWR | 89049-174 | |
7 mL Dounce Tissue Homogenizer with Two Glass Pestles | VWR | 71000-518 | |
70 mL polycarbonate bottle assembly | Beckman Coulter Life Sciences | 355622 | |
Agar Powder | VWR | A10752 | |
B10P Benchtop pH Meter with pH Probe | VWR | 89231-664 | |
Barnstead GenPure xCAD Plus UV/UF – TOC (bench version) | ThermoFisher Scientific | 50136146 | |
Benzonase Nuclease | MilliporeSigma | 70746-3 | |
EDTA disodium salt dihydrate 99.0-101.0%, crystals, ultrapure Bioreagent Molecular biology grade, J.T. Baker | VWR | 4040-01 | |
EmulsiFlex-C3 | Avestin, Inc. | ||
Fiberlite F13-14 x 50cy Fixed Angle Rotor | ThermoFisher Scientific | 75006526 | |
Hydrochloric acid 6.0 N | VWR | BDH7204 | |
IBI Scientific Orbital Platform Shaker | Fischer Scientific | 15-453-211 | |
LB Broth Miller | VWR | 214906 | |
Lysozyme, Egg White, Ultra Pure Grade | VWR | VWRV0063 | |
Magnesium chloride hexahydrate | Sigma Aldrich | M2670 | |
NADH | Sigma Aldrich | 10107735001 | |
Optima XPN-80 – IVD | Beckman Coulter Life Sciences | A99839 | |
Pharmco Products PURE ALCOHOL 200 PROOF GL 4/CS | Fischer Scientific | NC1624582 | |
Phenol Solution, Equilibrated with 10 mM Tris HCl, pH 8.0, 1 mM EDTA, BioReagent, for molecular biology | Sigma – Millipore | P4557 | |
Pierce Coomassie Plus (Bradford) Assay Kit | Thermofisher | 23238 | |
Pro-Q emerald 300 Lipopolysaccharide Gel Stain Kit | Thermofisher | P20495 | |
Proteacease -50, EDTA free | G Biosciences | 786-334 | |
Proteinase K, Molecular Biology Grade | New England Biolabs | P8107S | |
Sodium hydroxide ≥99.99% | VWR | AA45780-22 | |
Sorval RC 6 Plus Centrifuge | ThermoFisher Scientific | 36-101-0816 | |
Sucrose | MilliporeSigma | SX1075-3 | |
SW 41 Ti Swinging-Bucket Rotor | Beckman Coulter Life Sciences | 331362 | |
Tris(hydroxymethyl)aminomethane (TRIS, Trometamol) ≥99.9% (dried basis), ultrapure Bioreagent Molecular biology grade, J.T. Baker | VWR | JT4109-6 | |
Type 45 Ti Fixed-Angle Titanium Rotor | Beckman Coulter Life Sciences | 339160 | |
Ultra-Clear Tube ,14 x 89mm | Beckman Coulter Life Sciences | 344059 | |
Vortex-Genie 2 | VWR | 102091-234 |