Summary

人类免疫缺陷小鼠模型中的慢性、急性和再激活HIV感染

Published: December 03, 2019
doi:

Summary

本文介绍了三种研究人类小鼠HIV感染动态的实验方法。前者允许研究慢性感染事件,而后者允许研究原发感染或病毒重新激活后的急性事件。

Abstract

人性化NOD/SCID/IL-2受体+链小鼠重述人体免疫的一些特征,在传染病的基础和临床前研究中可以加以利用。本文介绍了三种用于研究HIV感染动态的人性化免疫缺陷小鼠模型。第一种是基于CD34的肝内注射-在新生小鼠的造血干细胞,这允许重组几个血液和淋巴组织封闭细胞,其次是感染与参考HIV菌株。此模型允许在感染后长达 36 周的监测,因此称为慢性模型。第二和第三个模型称为急性和再激活模型,其中外周血单核细胞在成年小鼠中腹中注射。在急性模型中,来自健康供体的细胞通过腹管内途径移植,然后感染参考HIV菌株。最后,在复活模型中,来自抗逆转录病毒疗法的受艾滋病毒感染捐赠者的细胞通过腹内途径进行移植。在这种情况下,鼠标中的无药物环境允许病毒重新激活和增加病毒载量。此处提供的方案描述了对HIV感染的人性化免疫缺陷小鼠模型的传统实验方法。

Introduction

人性化的NOD/SCID/白细胞素(IL)-2受体+链空(以下简称huNS+链空)小鼠模型已被广泛用于研究感染、自身免疫和癌症的发病机制,以及药物和基于人体细胞的疗法1、2的临床前研究。这些小鼠基于非肥胖糖尿病(NOD)背景,在IL-2受体β链位点(IL-2、IL-4、IL-7、IL-9、IL-15和IL-21)的共发β链上具有杀伤性突变和靶向突变,这在小鼠T-、B-和自然杀伤细胞(NK)的发育中引起严重损害。因此,它们支持人体组织、人类CD34+造血干细胞(HSCs)和人类外周血单核细胞(PBMC)3、4、5的移植。 此外,人类造血因子的转基因表达,如干细胞因子(SCF)、粒细胞因子/巨噬细胞菌群刺激因子(GM-CSF)和IL-3促进人类骨髓群6、7、8的移植。

在HIV研究中,描述了几种HuNS-链小鼠模型,这些模型在小鼠菌株、使用的人类细胞类型、用于移植的组织类型以及细胞的来源(即健康) 之间有所不同。HIV感染者)9日,10日。原始菌株,然而,被广泛使用,由于高水平的人体细胞移植和病毒复制后感染与参考HIV菌株11,12,13。具有人类造血因子(如NOG-EXL或NSG-SGM3)或植入人类肝脏和胸腺组织(骨髓-肝-胸腺[BLT]小鼠)的类似免疫缺陷小鼠菌株,对于评估骨髓群在抗HIV免疫反应中的作用、HIV对这些组织的影响及其作为病毒库的参与非常有用。此外,一些具有转基因表达的人类白细胞抗原(HLA)分子,以及BLT小鼠,可用于研究T细胞对HIV感染的反应16,17。

一般来说,在这些小鼠中,人性化取决于细胞来源、分娩途径(腹内、内肝、静脉内、心脏内)和小鼠年龄,在移植时为18、19、20。关于细胞来源,从脐带血、胎儿肝脏或动员的外周血中提取的人类CD34+HSC可注射在新生儿或幼鼠3、21。此外,成人β链小鼠可以通过注射PBMC(这里称为hu-PBL-NS+链小鼠)进行人体化,允许这些细胞在血液、继发性淋巴器官和发炎组织22、23、24中进行时间循环。

本文介绍了建立HUNS+链鼠模型以研究HIV感染的详细方案。第一种是慢性模型,其中从健康供体脐带血中提取的人类CD34+HC被注射到新生小鼠中,随后在人类免疫系统重组14周后感染参考HIV菌株。此模型允许在感染后长达 36 周对小鼠进行监测。第二个模型是急性模型,其中从健康捐赠者中提取的PBMC注射到成年NS+链小鼠中,随后在小鼠中人类T细胞扩张3周后感染参考HIV菌株。最后,第三个模型是重新激活模型,其中从受艾滋病毒感染的捐赠者在抑制性抗逆转录病毒疗法(ART)下获得的PBMC注射到成人NS+链小鼠中。在这种情况下,无药物环境允许病毒重新激活和增加病毒载量。后两种模型允许在移植后长达 9 周的监测。

总体而言,这三种模型对于病毒学研究、新药临床前研究以及HIV感染对全球免疫反应的影响评估都很有用。还必须考虑,使用感染艾滋病毒的人性化小鼠需要机构生物安全委员会(IBC)以及机构动物护理和使用委员会(IACUC)在进行任何实验之前进行审查和批准。这确保了该研究遵循所有内部和外部机构条例,规定使用危险生物材料和人道处理实验动物。

Protocol

在这项工作中,所有动物护理和程序都按照马里兰大学医学院机构动物护理和使用委员会(IACUC)审查和批准的协议进行(协议号1018017、1018018和0318009)。 1. 人类CD34=新生小鼠的HSC移植 始终使用一次性个人防护设备 (PPE),包括无菌磨砂、手套、专用鞋、鞋套、面罩、护目镜、头发/胡须发动机罩和无菌实验室外套。 在 10 mL 的 RPMI 1640 介质 10% FBS 中,?…

Representative Results

如上所述,在HSC注射后14周(慢性模型)或PBMC注射后3周(急性和再活化模型)时,小鼠通过流动细胞测定筛选人体细胞移植水平。图1A显示了用于评估1人CD45+细胞重组和2)CD4+和CD8+T细胞百分比的代表性门控策略。通常,移植水平(人类CD45+细胞的百分比)在CD34+HSC注射后为10%-80%,取决于注射和小鼠菌株的路线,除上述其他因素外…

Discussion

在开发用于人性化的免疫缺陷小鼠菌株方面取得了重要进展,根据研究兴趣1,可以使用许多不同的选择。这里提供了一个一般方案,用于NS +链小鼠和基因相似的菌株的人性化,用于三种不同的模型,用于研究艾滋病毒感染。在第一种实验方法中,辐照的新生小鼠被注射人类CD34+HSC,可以从脐带血、胎儿肝脏或动员的外周血3,21。<sup class="xref"…

Divulgaciones

The authors have nothing to disclose.

Acknowledgements

这项工作得到了IHV临床部门内部资金对JCZ的支持。

Materials

0. 5 ml Microcentrifuge tubes Neptune 3735.S.X
1. 5 ml Microcentrifuge tubes Neptune 3745.S.X
10 ml Serologial pipetes stellar sceintific VL-4090-0010
15 ml conical tubes Stellar scientific T15-600
25 ml Serologial pipetes stellar sceintific VL-4090-0025
5 ml Serologial pipetes stellar sceintific VL-4090-0005
50 ml conical tubes Stellar scientific T50-600
ACK lysis buffer Quality biological 118-156-101
Alcohol prep pads Fisher scientific 06-669-62 Sterile
Anti-Human CD3 clone UCHT1 Biolegend 300439 APC conjugated
Anti-Human CD4 clone OKT4 Biolegend 317420 AF488 conjugated
Anti-Human CD45 clone 2D1 Biolegend 368522 BV421 conjugated
Anti-Human CD8 clone SK1 Biolegend 344710 PerCP-Cy5.5 conjugated
Biosafaty cabinet level 2 If posible connected to an exauste chimeny when handling Isoflurane
Bonnet Fisher scientific 17-100-900 Single use cap for basic protection
Cavicide Metrex 13-1000 Surface desinfectant
CD34+ cells Lonza 2C-101 As many vials available from a single donor
Centrifuge Beckman 65-6KR
Clear jar Amazon 77977
Cotton gauze pad Fisher scientific 22-415-468 Sterile
Disposable lab coats Fisher scientific 19-472-422
EDTA micro tubes Greiner bio-one 450480
Face Mask Fisher scientific 17-100-897
FACS lysing solution BD 340202
FBS premium HI Atlanta biologicals S1115OH
Ficoll GE health one 17-1440-02
Flow cytometer We used FACS Aria II
Flow cytometry tubes Falcon 352054 5 ml polystyrene and round bottom
HIV BaL Prepared in our uQUANT core facility
Human PBMCs HIV positive and negative volunteers
Infrared warming pad Venet scientific DCT-25 Temporary therapeutic warming pad for small animals
Isentress (Raltegravir) Merck NSC 0006-0227061 Antiretroviral medication to treat human immunodeficiency virus (HIV)-Integrase inhibitor
Isoflurane Henry Schein NDC 11695-6776-2
Mark I irradiator Equipment belonging to university of Maryland
Micro pipettes
Microcentrifuge Eppendorf
Mouse ear tags National Band & Tag company 1005-1L1
Natelson blood collection tubes Fisher scientific 02-668-10
NOG-EXL Taconic HSCFTL-13395-F
NSG mice Jackson 5557 Time pregnant females for CD34 engraftment and Juveniles for PBMCs engraftment
NSG-SGM3 Jackson 13062
Paraformaldehyde 16% Electron microscopy sciences 15710
PBS 1X pH 7.4 Gibco 100-10-023
Petri dishes Fisher scientific 08-757-28
Quantistudio qPCR machine Thermo QS3
Reagent reservoirs Costar 4870
RPMI media 1640 1X Gibco 11875-093
Shoe covers Fisher scientific 17-100-911
Sterile disposable Gloves Microflex SUF-524
SuperScript II First-Strand Synthesis SuperMix Invitrogen 10080-400 cDNA synthesis
Syringes 28-G x 1/2 BD 329-461
Syringes 29-G x 1/2 BD 324-702
Truvada (Emtricitabine and Tenofovir Gilead NDC 61958-0701-1 Antiretroviral medication to treat human immunodeficiency virus (HIV)-Nicleoside analog-transcriptase inhibitor
Trypan blue Sigma T8154 Cell count and viability
Vick Vaporub School health 43214 Ointment based on menthol and eucalyptus
Water molecular biology grade Quality biological 351-029-131

Referencias

  1. Shultz, L. D., Ishikawa, F., Greiner, D. L. Humanized mice in translational biomedical research. Nature Reviews Immunology. 7, 118-130 (2007).
  2. Koboziev, I., et al. Use of humanized mice to study the pathogenesis of autoimmune and inflammatory diseases. Inflammatory Bowel Diseases. 21 (7), 1652-1673 (2015).
  3. Ito, M., et al. NOD/SCID/γcnull mouse: An excellent recipient mouse model for engraftment of human cells. Blood. 100 (9), 3175-3182 (2002).
  4. Ishikawa, F., et al. Development of functional human blood and immune systems in NOD/SCID/IL2 receptor {gamma} chain(null) mice. Blood. 106 (5), 1565-1573 (2005).
  5. Kim, K. C., et al. A Simple Mouse Model for the Study of Human Immunodeficiency Virus. AIDS research and human retroviruses. 32 (2), 194-202 (2016).
  6. Wunderlich, M., et al. AML xenograft efficiency is significantly improved in NOD/SCID-IL2RG mice constitutively expressing human SCF, GM-CSF and IL-3. Leukemia. 24 (10), 1785-1788 (2010).
  7. Billerbeck, E., et al. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rγnull humanized mice. Blood. 117 (11), 3076-3086 (2011).
  8. Coughlan, A. M., et al. Myeloid Engraftment in Humanized Mice: Impact of Granulocyte-Colony Stimulating Factor Treatment and Transgenic Mouse Strain. Stem cells and development. 25 (7), 530-541 (2016).
  9. Kumar, P., et al. T Cell-Specific siRNA Delivery Suppresses HIV-1 Infection in Humanized Mice. Cell. 134 (4), 577-586 (2008).
  10. Victor Garcia, J. Humanized mice for HIV and AIDS research. Current Opinion in Virology. 19, 56-64 (2016).
  11. Araínga, M., Su, H., Poluektova, L. Y., Gorantla, S., Gendelman, H. E. HIV-1 cellular and tissue replication patterns in infected humanized mice. Scientific Reports. 6, 1-12 (2016).
  12. Satheesan, S., et al. HIV replication and latency in a humanized NSG mouse model during suppressive oral combinational ART. Journal of Virology. 92 (7), 2118 (2018).
  13. Medina-Moreno, S., et al. Targeting of CDK9 with indirubin 3’-monoxime safely and durably reduces HIV viremia in chronically infected humanized mice. PLoS ONE. 12 (8), 1-13 (2017).
  14. Honeycutt, J. B., et al. Macrophages sustain HIV replication in vivo independently of T cells. The Journal of Clinical Investigation. 126 (4), 1353-1366 (2016).
  15. Perdomo-Celis, F., Medina-Moreno, S., Davis, H., Bryant, J., Zapata, J. C. HIV Replication in Humanized IL-3/GM-CSF-Transgenic NOG Mice. Pathogens. 8 (33), 1-16 (2019).
  16. Akkina, R., et al. Improvements and Limitations of Humanized Mouse Models for HIV Research: NIH/NIAID “Meet the Experts” 2015 Workshop Summary. AIDS Research and Human Retroviruses. 32 (2), 109-119 (2015).
  17. Dudek, T. E., Allen, T. M. HIV-Specific CD8+ T-Cell Immunity in Humanized Bone Marrow-Liver-Thymus Mice. The Journal of Infectious Diseases. 208, 150-154 (2013).
  18. Skelton, J. K., Ortega-Prieto, A. M., Dorner, M. A Hitchhiker’s guide to humanized mice: new pathways to studying viral infections. Immunology. 154, 50-61 (2018).
  19. Pearson, T., Greiner, D. L., Shultz, L. D. Creation of “humanized” mice to study human immunity. Current Protocols in Immunology. , (2008).
  20. Hasgur, S., Aryee, K. E., Shultz, L. D., Greiner, D. L., Brehm, M. A. Generation of Immunodeficient Mice Bearing Human Immune Systems by the Engraftment of Hematopoietic Stem Cells. Methods in molecular biology. 1438, 67-78 (2016).
  21. Shultz, L. D., et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology. 174 (10), 6477-6489 (2005).
  22. King, M., et al. A new Hu-PBL model for the study of human islet alloreactivity based on NOD-scid mice bearing a targeted mutation in the IL-2 receptor gamma chain gene. Clinical Immunology. 126 (3), 303-314 (2008).
  23. King, M. A., et al. Human peripheral blood leucocyte non-obese diabetic-severe combined immunodeficiency interleukin-2 receptor gamma chain gene mouse model of xenogeneic graft-versus-host-like disease and the role of host major histocompatibility complex. Clinical and Experimental Immunology. 157 (1), 104-118 (2009).
  24. Covassin, L., et al. Human peripheral blood CD4 T cell-engrafted non-obese diabetic-scid IL2rgamma(null) H2-Ab1 (tm1Gru) Tg (human leucocyte antigen D-related 4) mice: a mouse model of human allogeneic graft-versus-host disease. Clinical and experimental immunology. 166 (2), 269-280 (2011).
  25. Heredia, A., et al. Targeting of mTOR catalytic site inhibits multiple steps of the HIV-1 lifecycle and suppresses HIV-1 viremia in humanized mice. Proceedings of the National Academy of Sciences of the United States of America. 112 (30), 9412-9417 (2015).
  26. Nair, A., Jacob, S. A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy. 7 (2), 27-31 (2016).
  27. Miller, P. H., et al. Analysis of parameters that affect human hematopoietic cell outputs in mutant c-kit-immunodeficient mice. Experimental Hematology. 48, 41-49 (2017).
  28. Murphy, W. J., et al. Induction of T cell differentiation and lymphomagenesis in the thymus of mice with severe combined immune deficiency (SCID). Journal of Immunology. 153 (3), 1004-1014 (1994).
  29. Poluektova, L. Y., et al. Humanized Mice as Models for Human Disease. Humanized Mice for HIV Research. , 15-24 (2015).
  30. Nakata, H., et al. Potent anti-R5 human immunodeficiency virus type 1 effects of a CCR5 antagonist, AK602/ONO4128/GW873140, in a novel human peripheral blood mononuclear cell nonobese diabetic-SCID, interleukin-2 receptor gamma-chain-knocked-out AIDS mouse model. Journal of Virology. 79 (4), 2087-2096 (2005).
  31. Terahara, K., et al. Fluorescent Reporter Signals, EGFP, and DsRed, Encoded in HIV-1 Facilitate the Detection of Productively Infected Cells and Cell-Associated Viral Replication Levels. Frontiers in Microbiology. 2, 280 (2012).
  32. Nicolini, F. E., Cashman, J. D., Hogge, D. E., Humphries, R. K., Eaves, C. J. NOD/SCID mice engineered to express human IL-3, GM-CSF and Steel factor constitutively mobilize engrafted human progenitors and compromise human stem cell regeneration. Leukemia. 18 (2), 341-347 (2004).
  33. Cyster, J. G., et al. Follicular stromal cells and lymphocyte homing to follicles. Immunological Reviews. 176, 181-193 (2000).
  34. Seung, E., Tager, A. M. Humoral Immunity in Humanized Mice: A Work in Progress. Journal of Infectious Diseases. 208, 155-159 (2013).
  35. Wahl, A., Victor Garcia, J. The use of BLT humanized mice to investigate the immune reconstitution of the gastrointestinal tract. Journal of Immunological Methods. 410, 28-33 (2014).
  36. Suzuki, M., et al. Induction of human humoral immune responses in a novel HLA-DR-expressing transgenic NOD/Shi-scid/γc null mouse. International Immunology. 24 (4), 243-252 (2012).
  37. Ali, N., et al. Xenogeneic Graft-versus-Host-Disease in NOD-scid IL-2Rγnull Mice Display a T-Effector Memory Phenotype. PLoS ONE. 7 (8), 1-10 (2012).
  38. Brehm, M. A., Wiles, M. V., Greiner, D. L., Shultz, L. D. Generation of improved humanized mouse models for human infectious diseases. Journal of Immunological Methods. 410, 3-17 (2014).
  39. Hakre, S., Chavez, L., Shirakawa, K., Verdin, E. HIV latency: experimental systems and molecular models. FEMS Microbiology Reviews. 36 (3), 706-716 (2012).
  40. Wu, F., et al. TRIM5α Restriction Affects Clinical Outcome and Disease Progression in Simian Immunodeficiency Virus-Infected Rhesus Macaques. Journal of Virology. 89 (4), 2233 (2015).

Play Video

Citar este artículo
Perdomo-Celis, F., Medina-Moreno, S., Heredia, A., Davis, H., Bryant, J., Zapata, J. C. Chronic, Acute, and Reactivated HIV Infection in Humanized Immunodeficient Mouse Models. J. Vis. Exp. (154), e60315, doi:10.3791/60315 (2019).

View Video